
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

On breakdown of macroscopic models of mixing-controlled heterogeneous
reactions in porous media

I. Battiato a,1, D.M. Tartakovsky a,*,1, A.M. Tartakovsky b,1,2, T. Scheibe b,1,2

a Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
b Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA

a r t i c l e i n f o

Article history:
Received 21 May 2009
Received in revised form 26 August 2009
Accepted 26 August 2009
Available online 3 September 2009

Keywords:
Upscaling
Homogeneous reaction
Heterogeneous reaction
Reactive transport
Dissolution
Precipitation

a b s t r a c t

Reactive transport in porous media is a complex nonlinear phenomenon that involves both homogeneous
(bio-)chemical reactions between species dissolved in a fluid and heterogeneous reactions occurring on
liquid–solid interfaces. We establish sufficient conditions under which macroscopic reaction–diffusion
equations (RDEs) provide an adequate averaged description of pore-scale processes. These conditions
are represented by a phase diagram in a two-dimensional space, which is spanned by Damköhler number
and a scale-separation parameter. This phase diagram shows that highly localized phenomena in porous
media, including precipitation on (and/or dissolution of) a porous matrix, do not lend themselves to mac-
roscopic (upscaled) descriptions. To compute the predictive errors resulting from the use of macroscopic
RDEs, we upscaled the pore-scale RDEs to the continuum (macroscopic) scale and used pore-scale numer-
ical simulations to verify various upscaling assumptions.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Flow and transport in porous media can be described by
employing either pore-scale or Darcy-scale (macroscopic) models.
Pore-scale simulations have a solid physical foundation (e.g.,
Stokes equations for fluid flow and Fick’s law of diffusion for solute
transport), but require the knowledge of pore geometry that is sel-
dom available. The heterogeneity of most natural porous media
and prohibitive computational costs render lattice-Boltzmann
modeling, smoothed particle hydrodynamics, and other pore-scale
simulations impractical as a predictive tool at scales that are orders
of magnitude larger than the pore scale.

Macroscopic models, which treat a porous medium as an ‘‘aver-
aged” continuum, overcome these limitations at the cost of relying
on phenomenological descriptions, e.g., Darcy’s law for fluid flow
and an advection–dispersion equation (ADE) for transport. While
useful in a variety of applications, such models fail to capture
experimentally observed transport features, including a difference
between fractal dimensions of the diffusion and dispersion fronts
(isoconcentration contours) [14], long tails in breakthrough curves

[15], and the onset of instability in variable density flows [28].
ADE-based models of transport of (bio-)chemically reactive sol-
utes, which are the focus of our analysis, can significantly over-pre-
dict the extent of reactions in mixing-induced chemical
transformations [11, and references therein].

These and other shortcomings stem from the inadequacy of
either standard macroscopic models or their parametrizations or
both. Upscaling from the pore-scale, on which governing equations
are physically based and well defined, to the continuum scale, on
which they are used for qualitative predictions, often enables one
to establish the connection between the two modeling scales.
Mathematical approaches to upscaling include the method of vol-
ume averaging [32] and its modifications [9], generalizations of the
method of moments [22–24], homogenization via multiple-scale
expansions [2], pore-network models [1], and thermodynamically
constrained averaging [6]. A number of other approaches to upscal-
ing are reviewed in [4].

Most of these analyses, see also [33,34], deal with physical phe-
nomena described by linear partial differential equations, e.g., dis-
persion of conservative solutes or solutes undergoing first-order
chemical reactions. Nonlinearity of governing equations compli-
cates the upscaling of most reactive transport phenomena. It re-
quires a linearization and/or other approximations, whose
accuracy and validity cannot be ascertained a priori. This is espe-
cially so for a large class of transport processes, such as mixing-in-
duced precipitation, which exhibit highly localized reacting fronts
and consequently defy macroscopic descriptions that are com-
pletely decoupled from their microscopic counterparts [17,3,9].
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Pore-scale simulations of such processes are impractical due to
both high computational costs and the lack of detailed information
about the pore geometry of porous media larger than a small core.
Instead, the localized nature of reaction fronts calls for hybrid sim-
ulations [13,29], which resolve a small reactive region with a pore-
scale model that is coupled to its continuum counterpart in the rest
of a computational domain. (It is worthwhile pointing out that hy-
brid simulations are not applicable to transport phenomena for
which continuum models fail globally rather than locally either be-
cause ‘‘the connectivity of the pore space or a fluid phase plays a
major role” or because of ‘‘long-range correlations in the system”
[21, p. 1396].)

In this study, we use the method of volume averaging [32] to
delineate computational sub-domains where the breakdown of
standard continuum models occurs and, hence, a pore-scale com-
ponent of hybrid simulations is to be employed. Specifically, the
method of volume averaging is employed to identify transport re-
gimes for which the assumptions required for the validity of up-
scaled (macroscopic) equations do not hold, and pore-scale
simulations are used to validate this theoretical analysis. To focus
on the relative effects of nonlinear geochemical reactions and dif-
fusion, we neglect advection. In the follow up studies, we will con-
sider the effects of advection and employ upscaling approaches
other than the method of volume averaging.

In Section 2, we formulate a pore-scale model of mixing-in-
duced precipitation in porous media, which consists of a system
of coupled reaction–diffusion equations (RDEs); specify key physi-
cal and (bio-)chemical assumptions that underpin this model; and
identify Damköhler numbers for homogeneous and heterogeneous
reaction as dimensionless parameters that control the phenome-
non. In Section 3, we use the local volume averaging [32] to derive
a system of upscaled RDEs that are commonly used to model mix-
ing-induced precipitation on the continuum scale, e.g., [25, and the
references therein]. The goal here is to identify sufficient condi-
tions for the macroscopic RDEs to be a valid descriptor of mix-
ing-induced precipitation. Section 4 presents the results of pore-
scale simulations of mixing-induced precipitation, which unam-
biguously show that these conditions are not met.

2. Pore-scale description of mixing-controlled heterogeneous
reactions

Consider a porous medium X that is fully saturated with an
incompressible liquid at rest. The medium consists of a solid ma-
trix Xs and a liquid-occupied pore space Xl, so that X ¼ Xs [Xl.
The liquid is a solution of two chemical (or biological) species M1

and M2 (with respective concentrations c�1 and c�2) that react to
form an aqueous reaction product M3. Whenever c�3, the concentra-
tion of M3, exceeds a threshold value, M3 undergoes a heteroge-
neous reaction and precipitates on the solid matrix, forming a
precipitate M4ðsÞ. In general, this process of mixing-induced precip-
itation is fully reversible, M1 þM2 ¢ M3 ¢ M4ðsÞ, and its speed is
controlled by the reaction rates k12 ðL3 mol�1 T�1Þ;
kp ðL T�1Þ; k3 ðT�1Þ, and kd ðmol T�1 L�2Þ corresponding to the fol-

lowing reactions,

M1 þM2 !
k12 M3 !

kp
M4ðsÞ and M1 þM2  

k3 M3  
kd M4ðsÞ: ð1Þ

For bimolecular and unimolecular elementary reactions at constant
temperature, the change in concentration is proportional to the
product of the concentrations of the reactants. Hence, the consump-
tion and production rates, Rc

i with i 2 f1;2g and Rp
3, of species

Mi; i 2 f1;2g, and M3, respectively, associated with the homoge-
neous reaction in (1) are typically concentration-driven and of the
form Rc

i ¼ �Rp
3 ¼ �k12c�1c�2 þ k3c�3. For the heterogeneous reaction,

it is common to assume [10,5, and references therein] that (i) pre-

cipitation rate rp is proportional to concentration c�3, i.e., rp ¼ kpc�3;
(ii) dissolution rate rd is constant, rd ¼ kd; and (iii) the super-satura-
tion index does not become large enough to support precipitation in
the liquid phase, i.e., precipitation of M3 occurs solely as an over-
growth on solid grains.

With these assumptions, the aqueous concentrations
c�i ðr�; t�Þ ðmol L�3Þ at point r� and time t� satisfy a system of reac-
tion–diffusion equations (RDEs),

@c�i
@t�
¼Dir2

�c
�
i � k12c�1c�2 þ k3c�3 for r� 2Xl; t� > 0; i¼ 1;2; ð2aÞ

@c�3
@t�
¼D3r2

�c
�
3 þ k12c�1c�2 � k3c�3 for r� 2Xl; t� > 0 ð2bÞ

subject to the boundary conditions on the (multi-connected) li-
quid–solid interface Als

n � r�c�i ¼ 0; i ¼ 1;2; �D3n � r�c�3 ¼ kp c�3 � ceq
� �

ð3Þ

and the initial conditions

c�i ðx; 0Þ ¼ ci0ðxÞ; i ¼ 1;2;3; Xlð0Þ ¼ Xl0; ð4Þ

when concentration of M4ðsÞ is strictly positive. Here the starred (*)
quantities have appropriate units (physical dimensions), ceq ¼ kd=kp

is the equilibrium concentration, Di ðL2 T�1Þ ði ¼ 1;2;3Þ are the dif-
fusion coefficients of the aqueous species M1;M2, and M3, respec-
tively. Due to precipitation and dissolution, the liquid–solid
interface Alsðt�Þ, with the outward normal unit vector nðt�Þ, evolves
in time t� with velocity v ðL T�1Þ, according to qcv � n ¼ kpðc�3 � ceqÞ,
where qc ðmols L�3Þ is the molar density of the precipitate. The
dynamics of the interface Alsðt�Þ result from a modeling assumption
about the dependence of v on precipitation/dissolution rates and
mass conservation [30].

Under certain assumptions, the system of RDEs (2) can be sim-
plified by neglecting intermediate reactions [8,25,27, and the refer-
ences therein]. In particular, if in (2b) reactions are faster than
diffusion, and the diffusive term dominates the time-evolution
term, then (2b) yields c3 � k12=k3c1c2. Under these assumptions,
the system (2)–(3) reduces to a system of two equations for
c�i ði ¼ 1;2Þ: @c�i =@t� ¼ Dir2

�c
�
i subject to the interfacial conditions

n � r�c�i ¼ 0 and qcv � n ¼ kcðc�1c�2=ksp � 1Þ, where kc ¼ kpceq and
ksp ¼ k3ceq=k12 is the solubility product. Calcite precipitation from
calcium bicarbonate in water saturated with carbon dioxide, which
follows the reaction path Ca2þ þ 2HCO�3 $ CaðHCO3Þ2ðlÞ $
CaCO3ðsÞ þ CO2ðgÞ þH2O, provides an example of geochemical sys-
tems for which these assumptions are not valid [20,7]. For the sake
of generality, we consider a more comprehensive system (2).

To be specific, we consider a scenario in which two identical
solvents (e.g., water), one containing M1 with concentration c�10

and the other containing M2 with concentration c�20, are brought
in contact with each other at time t� ¼ 0. Since reactants M1 and
M2 are initially separated, no reactions took place and the initial
concentration of reaction product M3 is c�30 ¼ 0. This is a typical sit-
uation, corresponding, for example, to injection of a solution of M1

into a porous medium occupied by a solution of M2 [27].
The characteristic time scales associated with the chemical

reactions (1) are s1 ¼ s2 ¼ 1=k12c10 for concentrations c�1 and c�2,
and s3 ¼ c eq=k12c2

10 for concentration c�3. To simplify the presenta-
tion, we assume that the diffusion coefficients for reactants M1 and
M2 and product M3 are the same, D1 ¼ D2 ¼ D3 ¼ D. Let us intro-
duce dimensionless quantities

t ¼ t�

s
; q ¼ ceq

c10
; ci ¼

c�i
c10

; c3 ¼
c�3
ceq

; K ¼ k3ceq

k12c2
10

;

Da ¼ l2
l k12c10

D
; ð5Þ
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where i ¼ 1;2; ll denotes a characteristic length scale associated
with pore-structure; and Damköhler number Da is the ratio of dif-
fusion and reaction time scales for species Mi (i = 1,2,3). RDEs (2)
can now be written in a dimensionless form as

@ci

@t
¼ l2

l

Da
r2
�ci � c1c2 þ Kc3 ði ¼ 1;2Þ;

q
@c3

@t
¼ ql2

l

Da
r2
�c3 þ c1c2 � Kc3: ð6Þ

Following [26], we define a Damköhler number for the precipita-
tion/dissolution process as

Dals ¼
kpll

D
: ð7Þ

This yields a dimensionless form of the boundary conditions on the
liquid–solid interface Als,

n � r�ci ¼ 0 ði ¼ 1;2Þ; n � llr�c3 ¼ Dalsð1� c3Þ: ð8Þ

3. Macroscopic description of mixing-controlled heterogeneous
reactions

We proceed by employing the local volume averaging [32] to
upscale the pore-scale equations (6) and (8) to the macroscopic
scale. Section 3.1 contains definitions of the averaging procedure.
The derivation of upscaled equations is presented in Section 3.2.
The results are summarized in Section 3.3, which presents a phase
diagram identifying sufficient conditions under which the upscaled
(macroscopic) description is valid.

3.1. Preliminaries

Consider a volume of the porous medium V 2 X whose size is
jVj and characteristic radius r0 � ll, where ll is the pore-geometry
length scale. Let Vlðx�Þ 2V denote the liquid phase contained in
V, which is centered at x� 2 X. If a characteristic length-scale of
the macroscopic domain X is L, then the size of the averaging vol-
ume V is selected to satisfy ll � r0 � L.

Following [32], we define superficial and intrinsic averages of a
quantity cðr�Þ with r� 2 Vl as

hciðx�Þ ¼ 1
jVj

Z
Vlðx�Þ

cðr�Þd3r and

hcilðx�Þ ¼ 1
jVlðx�Þj

Z
Vlðx�Þ

cðr�Þd3r; ð9Þ

respectively. The two averages are related through porosity
/ � jVlj=jVj by hci ¼ /hcil. The application of spatial averaging is
facilitated by the spatial averaging theorem [32],

hr�ci ¼ r�hci þ
1
jVj

Z
Als

cndA; ð10Þ

where Alsðx�Þ ¼V \ Vlðx�Þ is the liquid–solid interface contained in
V.

Let Lc; Lc1, and L/ denote characteristic length-scales associated
with the macroscopic quantities hcil;r�hcil and /, respectively.
These scales are defined by [32, p. 19]

r�fiðxÞ ¼ O
Dfi

Li

� �
; DfiðxÞ � fi xþ Li

2

� �
� fi x� Li

2

� �
ð11Þ

for fi ¼ fhcil;r�hcil;/g and Li ¼ fLc; Lc1; L/g, respectively. The
notation

f ¼ OðgÞ ð12Þ

denotes an order of magnitude estimate in the following sense
[12, p. 391]:

jgjffiffiffiffiffiffi
10
p 6 jf j 6 jgj

ffiffiffiffiffiffi
10
p

: ð13Þ

3.2. Upscaling via volume averaging

In this section, we upscale the third equation in (6). The remain-
ing two equations in (6) are upscaled in a similar fashion.

We assume that reactions in the fluid phase are much faster
than precipitation on the solid phase, so that h@c3=@ti ¼ @hc3i=@t.
No assumptions are required for the upscaling of the linear term
hKc3il ¼ Khc3il. The averaging procedure is presented below as a
series of propositions. Their proofs are provided in the Appendix A.

Proposition 3.1. Suppose that the following scale constraints hold:

1) ll � r0,
2) r2

0 � L2 where L ¼ minfLc1; L/g,
3) �� 1 where � ¼ ll=Lc,
4) r0 � Lc,
5) r2

0 � LcLc1.

Then the average of the Laplacian in (6) can be approximated by

hr2
�c3i ¼ /r2

� hc3il þr�/ � r�hc3il þ
1
jVjr� �

Z
Als

~c3nls dA

� avDals
hc3il � 1

ll
; ð14Þ

where av � jAlsj=jVj and ~c3 is such that c3 ¼ hc3il þ ~c3.

The scale constraints of Proposition 3.1 are routinely used in the
method of volume averaging and other upscaling techniques to de-
fine the size of the averaging volume V, which might or might not
constitute a representative elementary volume (REV). Constraints
1 and 4 require V to be large enough to smooth out (average)
pore-scale fluctuations of relevant variables (e.g., concentration)
and small enough to capture their macro-scale variability, respec-
tively. The remaining constraints guarantee that the average con-
centration at the centroid of V provides an adequate
representation of the pore-scale concentration distribution at all
points inside V [32].

Proposition 3.2. Suppose that the scale constraints 3)–5) of the
Proposition 3.1 hold. Then the average of the reaction term in (6) can
be approximated by

hc1c2i ¼ /hc1ilhc2il: ð15Þ

While the approximation (15) can be improved upon, its impor-
tance for the present analysis stems from the observation that it
does not introduce additional scale constraints.

Proposition 3.3. Suppose that in addition to the constraints in
Proposition 3.1 the following scale constraints hold:

1) av � l�1
l ,

2) t � Da,
3) ll � L/.

Then, the concentration fluctuations ~c3 satisfy a differential equation

0 ¼ ql2
l

Da
r2
�~c3 þ

qav ll

/
Dals

Da
ðhc3il � 1Þ þ ~c1hc2il þ ~c2hc1il þ ~c1~c2 � K~c3

ð16Þ

subject to the boundary conditions

�n � r�~c3 ¼ n � r�hc3il þ Dals
hc3il þ ~c3 � 1

ll
: ð17Þ
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The scale constraint 1) corresponds to representations of solid
grains by spheres, in which case specific surface av , surface Als,
and volume Vl scale as l�1

; l2, and l3, respectively. The constraint
3) ensures that porosity changes smoothly enough for its gradient
to be negligible.

Boundary-value problems for fluctuations ~c1 and ~c2 are derived
in a similar manner. Further progress requires an assumption of
periodicity of the porous medium.

Proposition 3.4. Suppose that in addition to the scale constraints
imposed by Propositions 3.1 and 3.3 the porous medium is periodic
with a unit cell characterized by nðr� þ l�i Þ ¼ nðr�Þ, where l�i with
i ¼ 1;2;3 represents the three lattice vectors describing a spatially
periodic porous medium. Then concentration fluctuations are periodic,
~cðr� þ l�i Þ ¼ ~cðr�Þ, and hc3il andr�hc3il in (16) and (17) are evaluated
at the centroid.

Mathematical representations of natural porous media as a
periodic collection of unit cells might appear to be overly restric-
tive. However, this assumption often leads to homogenization re-
sults (effective or continuum models) that are applicable to more
realistic heterogeneous environments. A detailed discussion of
the practical utility of periodic conceptualizations of the pore-
structure of porous media can be found in Section 2 of [16].

Proposition 3.5. Suppose that in addition to the constraint imposed
by Proposition 3.3 the following constraints hold:

1) Dals � �,
2) Da� 1.

Then concentration fluctuations ~c3 can be represented in terms of the
macroscopic variables as

~c3 ¼ b� � r�hc3il þ shc3il þ w; ð18Þ

where the closure variables b�; s and w are solutions of the boundary-
value problems (wherein j ¼ 1;2;3)

r2
�b
� � k3

D
b� ¼ 0; �n � r�b� ¼ n at Als; b�ðr� þ l�j Þ ¼ b�ðr�Þ;

ð19Þ

r2
�s�

k3

D
s ¼ � avDals

/ll
;

� n � r�s ¼
Dals

ll
hc3il at Als; s r� þ l�j

� �
¼ sðr�Þ; ð20Þ

r2
�w�

k3

D
w ¼ avDals

/ll
;

� n � r�w ¼ �
Dals

ll
at Als; w r� þ l�j

� �
¼ wðr�Þ: ð21Þ

The conditions 1) and 2) ensure that the system is well-mixed
at the pore scale, as discussed in Section 3.3.

Combining the results from Propositions 3.1–3.5 with analo-
gous results for hc1il and hc2il, the volume averaging of (6) leads
to a system of macroscopic equations (see Appendix A.6)

/
@hciil

@t
¼ �

2

Da
r � ð/Deff � rhciilÞ � /hc1ilhc2il þ /Khc3il ði ¼ 1;2Þ;

ð22Þ

/q
@hc3il

@t
¼ q�2

Da
r � ð/Deff � rhc3ilÞ � qav ll

Dals

Da
½hc3il � 1	

þ /hc1ilhc2il � /Khc3il; ð23Þ

where the effective diffusivity tensor Deff is defined as

Deff ¼ Iþ 1
jVlj

Z
Als

nb�dA: ð24Þ

3.3. Applicability of macroscopic models

According to Proposition 3.5, a sufficient condition for the valid-
ity of the macroscopic description (22) and (23) requires that
Da� 1, which implies that on the pore scale the system is well-
mixed with diffusion dominating reactions. Further insight is
gained by relating different macroscopic diffusion and/or reaction
regimes to the Damköhler number Da expressed in terms of the
scale-separation parameter �. (This is conceptually similar to the
analysis of macroscopic dispersion equations [3], which identifies
distinct transport regimes by expressing the Péclet number as
powers of �.) Interplay between the Damköhler number and �
determines whether macroscopic RDEs (22) and (23) are diffusion
or reaction dominated. For Da < �2, the macroscopic process is dif-
fusion-driven and the nonlinear effects introduced by reactions are
negligible. The two mechanisms are of the same order of magni-
tude in the region �2 < Da < �, while reactions dominate diffusion
if � < Da < 1.

Combining constraints 1) and 4) of Proposition 3.1 and 1) of
Proposition 3.4, we can write ll � r0 �minfLc; Lc1g. As an example,
let us assume that Lc ¼ minfLc; Lc1g, where Lc is the typical length
scale associated with the average concentration, as defined by
(11). Recalling the operational definition of the order of magnitude
Oð�Þ in (12) and (13) and the definition of � in Proposition 3.1, we
obtain a constraint � 6 10�3.

Fig. 1 summarizes these constraints in the form of a phase dia-
gram. The solid red line, which is composed of the straight lines
Da ¼ 1, and � ¼ 10�3, separates the region where the macroscopic
model (22) and (23) is valid (to the right of the red line) and the
region where it is a priori not (to the left of the red line). The
dashed blue lines Da ¼ �2 and Da ¼ � separate the diffusion-dom-
inated, diffusion–reaction, and reaction-dominated regimes for
(22) and (23). In the region ��1 < Da < 1, a system of equations

Fig. 1. Phase diagram indicating the range of applicability of macroscopic equations
for the reaction–diffusion system (6) in terms of Da. The blue regions identify the
sufficient conditions under which the macroscopic equations hold. In the red and
orange regions, macro- and micro-scale problems are coupled and have to be solved
simultaneously. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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for pore-scale fluctuations [17] must be solved simultaneously with
a macroscopic problem (see Appendix A.6). This region is labeled
‘‘Coupled Scales” in Fig. 1. Mixing-induced precipitation, which is
characterized by Da� 1, falls into the category of physical phe-
nomena for which pore-scale or hybrid simulations are necessary.

4. Comparison with pore-scale simulations

In this section, we use pore-scale numerical simulations of (6)
and (8) with Da > 1 both to demonstrate that the constraints im-
posed by the averaging procedure outlined above are indeed not
satisfied in the region ‘‘Hybrid” of the phase diagram in Fig. 1
and to quantify various approximation errors. A computational
example with Da ¼ 4:4 � 10�4, which represents the region in
Fig. 1 where continuum models are expected to be valid, can be
found in [29].

The RDEs (6) are defined for the pore space of a two-dimen-
sional porous medium ½�L=2; L=2	 
 ½0;B	, with L ¼ 32 and B ¼ 8.
The porous medium is composed of circular grains with radius
ll ¼ 3, which form periodically arranged unit cells, as shown in
Fig. 2. In addition to the boundary conditions (8), the RDEs (6)
are subject to the exterior boundary conditions @xc1ðL=2; y; tÞ ¼ 0,
@xc2ð�L=2; y; tÞ ¼ 0, @xc3ð�L=2; y; tÞ ¼ 0, c1ð�L=2; y; tÞ ¼ 1, and
c2ðL=2; y; tÞ ¼ 1. The periodic boundary conditions are prescribed
at y ¼ 0 and y ¼ B. The initial conditions are c1ð�L=2 6 x 6
0; yÞ ¼ 1, c1ð0 < x 6 L2; yÞ ¼ 0, c2ð�L=2 6 x < 0; yÞ ¼ 1, and
c2ð0 6 x 6 L2; yÞ ¼ 0.

4.1. Numerical implementation

We used the mesh-free Smoothed Particle Hydrodynamics
(SPH) simulations [26,29] to solve this initial-boundary-value
problem. SPH ‘‘particles” were placed on square lattices whose size
is Dx ¼ Dy ¼ 0:25. Table 1 presents the parameter values used in
these simulations. We consider K � 1 so that the backward homo-
geneous reaction can be neglected.

The macroscopic quantities, such as hc1i, were computed from
the pore-scale simulations by averaging over a volume V whose
characteristic dimension is r0 � ll. Following [19], we define the
size of the averaging volume, i.e., the value of r0, as the minimum
radius of V beyond which porosity / remains constant as the aver-
aging volume increases. For the geometric parameters used in our

simulations, this yields r0 ¼ 125 which clearly satisfies the
inequality r0 � ll. The intrinsic average hc1il in (9) was computed
as

hc1ilðxÞ �
1

NðxÞ
X
b2V

c1ðybÞWx;r0 ðybÞ; ð25Þ

where NðxÞ is the number of liquid SPH ‘‘particles” contained in
VðxÞ; yb is the position of the ‘‘particle” b, and

Wx;r0ðyÞ ¼
1 if jy � xj 6 r0;

0 if jy � xj > r0:

	
ð26Þ

4.2. Simulation results

We start by investigating whether the mixing-induced precipi-
tation described on the pore scale by the system of RDEs (6) lends
itself to scale separation. It follows from (11) and (13) that

jrhc1ilj 6
jDhc1ilj

Lc

ffiffiffiffiffiffi
10
p

6

ffiffiffiffiffiffi
10
p

Lc
; ð27Þ

where the second inequality stems from the bound jDhcilj 6 1, since
0 6 hcil 6 1. Using an operational definition of� [31, p. 13], we ex-
press the constraint Lc � r0, imposed by Proposition 3.1, in terms of
an inequality Lc P 10r0. Substituting this inequality into (27) gives
an upper bound of the gradient of the average concentration,

jrhc1ilj 6
1ffiffiffiffiffiffi

10
p

r0
; ð28Þ

which serves as a necessary condition for the scale separation to
occur.

Fig. 2. (a) Schematic representation of a unit cell of the porous medium at the pore scale. White spaces represent solid grains. (b) Concentration distribution for c1 in the
macroscopic domain, obtained by replicating the unit cell in the y-direction.

Table 1
Parameter values (in model units) and corresponding dimensionless quantities used
in pore-scale simulations.

Parameters Units Dimensionless parameters

D ¼ 0:5 L2 T�1 Da ¼ 27

k12c10 ¼ 1:5 T�1 Dals ¼ 120

kp ¼ 20 L T�1 q ¼ 0:3

ceq ¼ 0:15 mol L�2

ceq=c10 ¼ 0:3 –
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Fig. 3a exhibits profiles of c1ðxÞ and hc1ilðxÞ along the cross-sec-
tion y ¼ B=2þ nB; n ¼ f0;1;2 . . .g, which lies entirely in the fluid
phase. Numerical differentiation was further used to compute
rhc1il along this cross-section. Small oscillations of the intrinsic
average hc1ilðxÞ in Fig. 3a stem from its definition (9). As the aver-
aging window of size jVjmoves from left to right, the pore volume
Vl varies periodically, giving rise to large periodic oscillation in
rhc1il (Fig. 3b). One can see that the smoothed (average) gradient
is rhc1il � Dhc1il=Dx � 1=200 ¼ 0:005, so that the bound (28) is
not satisfied in the vicinity of the reacting front. This violates the
constraint Lc � r0 imposed by Proposition 3.1.

We now proceed to analyze how the lack of scale separation af-
fects the accuracy of the closure approximation hc1c2il � hc1ilhc2il,
on which the macroscopic RDEs (22) and (23) are based. The proof
of Proposition 3.2 in Appendix A.2 demonstrates that this closure
requires one to neglect the terms h~c1~c2il; h~c1hc2ilil and h~c2hc1ilil,
and to assume that hhc1ilhc2ilil � hc1ilhc2il. The results of our
pore-scale simulations shown in Fig. 4 reveal that both
hhc1ilhc2ilil and hc1ilhc2il significantly overestimate hc1c2il.

This finding is further elaborated upon in Fig. 5, which depicts
the relative errors in progressively improved approximations of
the term hc1c2il,

E%
i ¼

jEij
hc1c2il

; i ¼ 1; . . . ;4; ð29Þ

where E1 ¼ hc1ilhc2il � hc1c2il; E2 ¼ E1 þ h~c1~c2il; E3 ¼ E2 þ h~c1hc2ilil,
and E4 ¼ E3 þ h~c2hc1ilil. While the incorporation of more fluctuating

terms slightly decreases the relative errors, they remain unaccept-
ably high even when all the terms are included ðE%

4 � 103Þ. This
shows that hhc1ilhc2ilil � hc1ilhc2il is the weakest approximation.
(Recall that the definition of the intrinsic average h�il in (9) implies
that this indeed is only an approximation.) This finding is to be ex-
pected, since for Lc ¼ OðllÞ a Taylor expansion around the centroid
does not provide an accurate description of nonlocal terms.

5. Conclusions

Reactive transport in fully saturated porous media is a complex
nonlinear phenomenon that involves both homogeneous (bio-
)chemical reactions between species dissolved in a fluid and heter-
ogeneous reactions that occur on liquid–solid interfaces. We
considered processes that are dominated by two transport mecha-
nisms, molecular diffusion and (bio-)chemical reactions, whose
relative importance is quantified by the (dimensionless) Damköh-
ler number Da. Specifically, we considered mixing-induced precip-
itation, in which two dissolved reactants produce a third species
that, after reaching a threshold concentration value, precipitates
on the solid matrix.

Our main goal was to establish sufficient conditions under
which macroscopic reaction–diffusion equations (RDEs) provide
an adequate averaged description of pore-scale processes, and to
quantify predictive errors that occur when some or all of these
conditions are violated. To accomplish this goal, we upscaled the
pore-scale RDEs to the continuum (macroscopic) scale and used

Fig. 3. Horizontal cross-sections at t ¼ 15;400 of (a) pore-scale concentration c1 and its intrinsic average hc1il , and (b) the horizontal component of the average concentration
gradient rhc1il .

Fig. 4. Horizontal cross-sections of (a) hc1c2il and its approximations, (b) hhc1ilhc2ilil and (c) hc1ilhc2il .
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pore-scale numerical simulations to verify various upscaling
assumptions. Our analysis leads to the following major
conclusions.

(1) The range of applicability of macroscopic RDEs and various
transport regimes can be described with a phase diagram
(Fig. 1) in the (Da; �Þ space; where Da is the Damköhler num-
ber and � is the scale-separation parameter defined as the
ratio of the characteristic lengths associated with pore-scale
geometry and macroscopic concentrations of reacting spe-
cies, respectively.

(2) This phase diagram shows that highly localized phenomena
in porous media, such as mixing-induced precipitation on
(and/or dissolution of) a porous matrix, do not lend them-
selves to macroscopic (upscaled) descriptions. The use of
macroscopic RDEs, such as (22) and (23), to describe such
phenomena relies on a number of approximations whose
accuracy cannot be ascertain a priori.

(3) Validation of these approximations requires pore-scale sim-
ulations. Our simulations suggest that the largest error
stems from the localization, hhc1ilhc2ilil � hc1ilhc2il, of the
product of macroscopic (averaged) concentrations
hciil ði ¼ 1;2Þ rather than from omission of the terms involv-
ing pore-scale fluctuations ~ci. This suggests that a nonlocal
(integro-differential) alternative of (22) and (23) might pro-
vide an accurate macroscopic approximation.

(4) Hybrid pore-scale/continuum-scale simulations [13,29] pro-
vide a more rigorous (and more computationally intensive)
alternative. The scale-separation constraint (28) can
facilitate such simulations by identifying the regions in a
continuum computational domain where average (contin-
uum-scale) concentration gradients exceed the given bound.

In follow-up studies, we will incorporate advection and disper-
sion into the analysis presented above, employ upscaling ap-
proaches other than the method of volume averaging to identify
regions where continuum models break down, and develop hybrid
algorithms which couple pore-scale simulations in these regions
with continuum descriptions elsewhere in a computational domain.

Appendix A. Proofs of propositions

A.1. Proposition 3.1

A detailed derivation of the proof can be found in [32]. It is
reproduced here for completeness in order to identify all the rele-
vant constraints.

Applying the averaging theorem (10) to r2
�c3 twice, while

accounting for the boundary condition (8), using the decomposi-
tion c3 ¼ hc3il þ ~c3, and keeping the two leading terms in a Taylor
expansion of the average concentration hc3ilðx� þ y�l Þ under the vol-
ume integrals, one obtains [32, Eqs. 1.3-8]

hr2
�c3i ¼ r� � /r�hc3il �r�hy�l i � r�hc3il

�
�1

2
r�hy�l y�l i : r�r�hc3il

1
jVj

Z
Als

~c3ndA
�

�avDals
hc3ils � 1

ll
; ðA:1Þ

where

hc3ils �
1
jAlsj

Z
Als

c3 dA;

Fig. 5. Relative errors E%
i ði ¼ 1; . . . ;4Þ in (29) introduced by various closure approximations.
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r� y�l

 �

is a second order tensor andr� y�l y�l

 �

is a third-order tensor.
The first constraint, r0 � ll, ensures that r� y�l


 �
� r�hc3il is much

smaller than /r�hc3il and, hence, can be neglected [32, p. 18]. The
second constraint, r2

0 � L/Lc1, implies that r� y�l y�l

 �

: r�r�hc3il is
much smaller than /r�hc3il and can be neglected [32, p. 20]. With
these approximations, (A.1) reduces to

r2
�c3

D E
¼ r� � /r�hc3il þ

1
jVj

Z
Als

~c3ndA

 !
� avDals

hc3ils � 1
ll

:

ðA:2Þ

To complete the proof, one has to show that hc3ils can be replaced
with hc3il. The third constraint, ll � Lc , is required for the inequality
hc3il � ~c3 to hold [32, p. 29, Eqs. 1.4-23], so that hc3ils � hhc3ilils. The
fourth, r0 � Lc , and fifth, r2

0 � LcLc1, constraints guarantee that
hhc3ilils � hc3il [32, p. 20]. Substituting hc3ils ¼ hc3il into (A.2) leads
to (14).

A.2. Proposition 3.2

Using the decomposition ci ¼ hciil þ ~ci ði ¼ 1;2Þ in the average
of the nonlinear term hc1c2i yields

hc1c2i ¼ hhc1ilhc2ili þ h~c1hc2ili þ hhc1il~c2i þ h~c2~c1i: ðA:3Þ

The constraint 3) of Proposition 3.1, �� 1, allows one to disregard
the terms containing pore-scale fluctuations ~ci ði ¼ 1;2Þ so that

hc1c2i � hhc1ilhc2ili ¼
1
jVj

Z
Vl

hc1il x� þ y�l
� �

hc2il x� þ y�l
� �

d3r: ðA:4Þ

Taylor expansions of the averaged concentrations around the cen-
troid x� leads to

hc1c2i � /hc1ilhc2il þ hc1ilhy�l i � r�hc2il þ
1
2
hc1ilhy�l y�l i

: r�r�hc2il þ hc2ilhy�l i � r�hc1il þ
1
2
hc2il y�l y�l


 �
: r�r�hc1il þr�hc1il y�l y�l


 �
r�hc2il þ � � � ðA:5Þ

Since hy�l i ¼ Oð/r0Þ [32, p. 31], the constraint 4) of Proposition 3.1,
r0 � Lc , gives the following estimate

hc1ilhy�l i � r�hc2il ¼ O
r0

Lc
/hc1ilhc2il

� �
� hc1ilhc2il: ðA:6Þ

An analogous estimate holds for hc2ilhy�l i � r�hc1il. Since
hy�l y�l i ¼ Oð/r2

0Þ [32, p. 19], the constraint 5) of Proposition 3.1,
r2

0 � LcLc1, leads to an estimate

hc1il y�l y�l

 �

: r�r�hc2il ¼
r2

0

LcLc1
O /hc1ilhc2il
� �

� hc1ilhc2il: ðA:7Þ

An analogous estimate holds for hc2ilhy�l y�l i : r�r�hc1il. Finally, the
constraint 4) of Proposition 3.1, r2

0 � L2
c , yields an estimate

r�hc1ilhy�l y�l ir�hc2il ¼
r2

0

L2
c

Oð/hc1ilhc2ilÞ � hc1ilhc2il: ðA:8Þ

Substituting these estimates into (A.5) leads to the approximation
(15).

A.3. Proposition 3.3

Given the approximations (14) and (15), the volume averaging
of (6) yields

q
@hc3il

@t
¼ ql2

l

Da
r2
� hc3il þ

1
/
r�/ � r�hc3il þ

1
/jVjr� �

Z
Als

~c3nls dA

 !

� qav ll

/
Dals

Da
ðhc3il � 1Þ þ hc1ilhc2il � Khc3il: ðA:9Þ

The equation governing the dynamics of the concentration fluctua-
tions ~c3 is obtained by subtracting (A.9) from (6),

q
@~c3

@t
¼ ql2

l

Da
r2
�~c3 �

1
/
r�/ � r�hc3il �

1
/jVjr� �

Z
Als

~c3nls dA

 !

þ qav ll

/
Dals

Da
ðhc3il � 1Þ þ c1c2 � hc1ilhc2il � K~c3: ðA:10Þ

The constraint 1) of Proposition 3.3, av � l�1
l , implies that the inte-

gral term in (A.10) is much smaller thanr2
�~c3 and, hence, can be ne-

glected [32, p. 26]. If t � Da, the constraint 2) of Proposition 3.3, the
closure problem can be considered quasi-steady, i.e., the time deriv-
ative in (A.10) can be dropped. The constraint 3) of Proposition 3.3,
ll � L/, ensures that /�1r�/ � r�hc3il can be neglected [32, p. 27].
Combining these approximations with the decomposition
ci ¼ hciil þ ~ci ði ¼ 1;2Þ of the term c1c2 in (A.10) yields the equation
for fluctuations (16). A similar procedure leads to the boundary con-
dition (17).

A.4. Proposition 3.4

Further progress requires one to assume that a porous medium
is spatially periodic [4,32]. This allows one to solve for ~c in some
representative region and then use this solution to construct a clo-
sure. Since boundary conditions on the surface of a computational
domain have negligible influence on ~c-field almost everywhere
[18], one can impose a periodic condition at the boundary of the
unit cell, ~cðr� þ l�i Þ ¼ ~cðr�Þ, where l�i ði ¼ 1;2;3Þ represent the three
non-unique lattice vectors describing a spatially periodic porous
medium. It is important to recognize that this periodic boundary
condition is consistent with the equations for fluctuations only if
the geometry is periodic and source terms are either constant or
spatially periodic inside the representative volume.

Expanding hc3il and r�hc3il in (16) and (17) into Taylor series
around the centroid x� and invoking the constraint 4) of Proposi-
tion 3.1 to neglect the higher-order terms, one obtains a local for-
mulation for the ~c3-field [32, p. 32]. In this formulation, reactive
sources (the terms proportional to hciil) and diffusive sources
(the terms proportional to r�hciil) are evaluated at the centroid
x� and, hence, are treated as constant and spatially periodic,
respectively [32, p. 32]. This ensures that the periodic boundary
conditions ~cðr� þ l�i Þ ¼ ~cðr�Þ are consistent with (16) and (17).

A.5. Proposition 3.5

Let c4 � c3 � 1. Hence, hc3il � 1 ¼ hc4il and ~c3 ¼ ~c4. An equation
and a boundary condition for deviation ~c4 can be obtained respec-
tively from (16) and (17) through the previous substitutions. An or-
der-of-magnitude analysis of boundary condition for ~c4 leads to
estimates

~c4 ¼ O
�þ Dals

1þ Dals
hc4il

� �
) ~c4 ¼ Oð�hc4ilÞ: ðA:11Þ

The second estimate in (A.11) stems from the constraint 3) of Prop-
osition 3.1, �� 1, and the constraint 1) of Proposition 3.5, Dals � �.
The estimate (A.11) allows one to simplify the boundary condition
for ~c4 and consequently to approximate the boundary condition
(17) with

�n � r�~c3 ¼ n � r�hc3il þ Dals
hc3il � 1

ll
on Als: ðA:12Þ

The estimate (A.11) also leads to the following order-of-magnitude
estimates of the terms in the equation for ~c4 : ql2

l r2
�~c4=Da ¼

Oðq�hc4il=DaÞ, qav llDalshc4il=/Da¼OðqDalshc4il=DaÞ, K~c4¼Oð�Khc4ilÞ,
hciil~cj¼Oð�hciilhcjilÞ for i;j¼f1;2g such that i– j, and
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~c1~c2¼Oð�2hc1ilhc2ilÞ. An order-of magnitude relation between hc4il

and hc1il (or hc2il) is needed in order to compare the terms contain-
ing perturbations ~c1 and ~c2 with those containing ~c4 and hc4il. It is
obtained from equations for ~c1 (or ~c2) by recognizing that
�l2

l r2
�~c1=Da¼ql2l r2

�~c4=Daþqav llDalshc4il=/Da, which leads to
estimates

hc4il ¼ O
�

�þ Dals

hc1il

q

 !
) hc4il ¼ O

hc1il

q

 !
: ðA:13Þ

The estimate (A.13) combined with the constraint 2) of Proposition
3.5 allows one to neglect the terms containing deviation ~c1 and ~c2

(i.e., ~c1~c2 and hciil ~cj for i; j ¼ f1;2g such that i – j) relative to the dif-
fusion term ql2

lr2
�~c4=Da. For example, the order of magnitude of the

ratio between ql2
lr2

�~c4=Da and hc1il ~c2 is OðDahc2ilÞ for hc1il – 0. Since
0 6 hc2il 6 1, this yields hc1il ~c2 � ql2l r2

�~c4=Da if Da� 1. Neglecting
the fluctuation terms in the equation for ~c4 allows one to approxi-
mate (16) as

r2
�~c3 �

k3

D
~c3 ¼ �

avDals

/ll
ðhc3il � 1Þ in Vl: ðA:14Þ

In the spirit of [32], we represent a solution of (A.12) and (A.14)
as

~c3 ¼ b� � r�hc3il þ shc3il þ w; ðA:15Þ

where b�; s and w are undetermined functions called closure vari-
ables. They are specified as solutions of the boundary-value prob-
lems (19)–(21), which are obtained by substituting (A.15) into
(A.14).

Constraint 2 of Proposition 3.5 is required for similar analyses of
equations for c1 and c2.

A.6. Miscellaneous

Derivation of (22) and (23). Substitution of (A.15) into (A.9)
gives

q
@hc3il

@t
¼ ql2

l

/Da
r� � ½/ðDeff � r�hc3il þ uhc3il þ pÞ	

� qav ll

/
Dals

Da
½hc3il � 1	 þ hc1ilhc2il � Khc3il ðA:16Þ

where Deff is given by (24) and u and p are defined as

u ¼ 1
jVlj

Z
Als

snls dA; p ¼ 1
jVlj

Z
Als

wnls dA: ðA:17Þ

The constraint 1 of Proposition 3.3, av � l�1
l , and Eq. (20), that

provides an estimate for s, imply that ql2l r� � ð/uhc3ilÞ=/Da is
much smaller than qav llDalshc3il=/Da and, thus, can be neglected
[32, p. 36]. Similar results can be obtained for ql2

lr� � ð/pÞ=/Da that
can be neglected relative to qav llDals=/Da. With these approxima-
tions (A.16) reduces to (23), wherein the space coordinates are
scaled with a typical macroscopic length, e.g., Lc .

A similar procedure leads to (22).
Analysis of Ochoa-Tapia et al. [17]. The derivation of macroscopic

Eqs. (22) and (23) is tantamount to a closure for hc1c2i in which all
terms containing concentration fluctuations, i.e., ~c1~c2 and ~ckhcjil

(k; j ¼ f1;2g such that k – j), are neglected. It requires the set of
constraints specified in Propositions 3.1–3.5. Ochoa-Tapia et al.
[17] neglect ~c1~c2 while retaining ~ckhcjil (k; j ¼ f1;2g such that
k – j). This leads to a closure for hc1c2i where one of these con-
straints, Da� 1, needs to be replaced with 1� Da� 1=�. The clo-
sure results in a system of equations for pore-scale fluctuations
Aij~cj ¼ bi—where A11 ¼ ðl2

l =DaÞr2
� � hc2il, A22 ¼ ðl2

l =DaÞr2
� � hc1il,

A33 ¼ ðql2
l =DaÞr2

� � K , A12 ¼ �hc1il, A21 ¼ �hc2il, A31 ¼ hc2il,
A32 ¼ hc1il, b3 ¼ �ðqav llDals=/DaÞðhc3il � 1Þ, A13 ¼ A23 ¼ K and
b1 ¼ b2 ¼ 0—that must be solved simultaneously with a macro-
scopic problem (see Fig. 1).
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