
Journal of Contaminant Hydrology 120–121 (2011) 18–26

Contents lists available at ScienceDirect

Journal of Contaminant Hydrology

j ourna l homepage: www.e lsev ie r.com/ locate / jconhyd
Applicability regimes for macroscopic models of reactive transport in
porous media

I. Battiato, D.M. Tartakovsky ⁎
Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
a r t i c l e i n f o
⁎ Corresponding author. Tel.: +1 858 534 1375.
E-mail address: dmt@ucsd.edu (D.M. Tartakovsky)

0169-7722/$ – see front matter © 2010 Elsevier B.V.
doi:10.1016/j.jconhyd.2010.05.005
a b s t r a c t
Available online 26 May 2010
 We consider transport of a solute that undergoes a nonlinear heterogeneous reaction: after
reaching a threshold concentration value, it precipitates on the solidmatrix to form a crystalline
solid. The relative importance of three key pore-scale transport mechanisms (advection,
molecular diffusion, and reaction) is quantified by the Péclet (Pe) andDamköhler (Da) numbers.
We use multiple-scale expansions to upscale a pore-scale advection–diffusion equation with
reactions entering through a boundary condition on the fluid–solid interface, and to establish
sufficient conditions under which macroscopic advection–dispersion-reaction equations
provide an accurate description of the pore-scale processes. These conditions are summarized
by a phase diagram in the (Pe, Da)-space, parameterizedwith a scale-separation parameter that
is defined as the ratio of characteristic lengths associated with the pore- and macro-scales.

© 2010 Elsevier B.V. All rights reserved.
Keywords:
Upscaling
Homogenization
Homogeneous reaction
Heterogeneous reaction
Dissolution
Precipitation
Multiple scale expansion
1. Introduction

Nonlinear reactive transport in porous media can be
described with either pore-scale or Darcy-scale (macroscopic)
models. Pore-scale simulations have a solid physical founda-
tion, but require theknowledgeof poregeometry that is seldom
available and are impractical as a predictive tool at scales that
are orders ofmagnitude larger than the pore scale.Macroscopic
(effective, upscaled, continuum, homogenized, etc.) models,
which represent a porous medium as an averaged continuum,
overcome these limitations at the cost of relying on largely
phenomenological descriptions and/or closure assumptions.
While useful in a variety of applications, upscaledmodels often
fail to capture a number of experimentally observed transport
features, including asymmetrical long tails of breakthrough
curves (Neuman and Tartakovsky, 2009), the extent of reac-
tions in mixing-controlled chemical transformations (Knutson
et al., 2007; Li et al., 2006), the onset of instability in variable
density flows and the disparity in fractal dimensions of
diffusion and dispersion fronts (Maloy et al., 1998).
.
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These shortcomingsmanifest themselveswhen approxima-
tions and/or closure assumptions underlying continuum
models are violated. Regardless of which upscaling approach
is used—e.g., volume averaging, themethod of moments, pore-
network models, homogenization via multiple-scale expan-
sions and its modifications, and thermodynamically con-
strained averaging (see (Battiato et al., 2009) for references)—
nonlinearities of pore-scale governingequations and/or bound-
ary conditions require linearization and other approximations
that may render macroscopic representations of pore-sale
processes inadequate.

Most upscaling studies focus on the derivation of effective
models that relate microscopic (pore-scale) characteristics of a
porous medium and/or fluid processes to their macroscopic
(continuum, meso- or Darcy-scale) counterparts (Hesse et al.,
2009, and the references therein). In doing so, one disregards
certain terms in an averaging (homogenization) procedure by
claiming, for example, that fluctuations about their respective
means are small and can be neglected. Such approaches
establish connections between physicochemical processes on
different scales, provided the underlying assumptions hold.
However, they cannot be used to identify the validity of these
assumptions and the regions of a computational domain
wherein a continuum (effective) model breaks down. The
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latter is essential for hybrid simulations, which employ pore-
scale and continuum descriptions of the same phenomenon in
different regions of a computational domain (Tartakovsky et al.,
2008).

Upscaling approaches that rely on characteristic dimen-
sionless numbers (e.g., the Damköhler and Péclet numbers)
can provide quantitative measures for the validity of various
upscaling approximations. For example, the Péclet number
(Pe) determines whether an advection–dispersion equation
provides an effective representation of pore-scale dispersion
(Auriault and Adler, 1995); the Damköhler number (Da) can
be used to predict the breakdown of continuum models of
simultaneous pore-scale diffusion and nonlinear homoge-
neous and linear heterogeneous reactions (Battiato et al.,
2009); and both Da and Pe determine whether transport in a
capillary tube due to advection, diffusion and linear hetero-
geneous reactions is homogenizable (Mikelic et al., 2006).

We investigate the conditions under which continuum
descriptions of reactive transport, i.e., advection–dispersion-
reaction equations (ARDEs), break down. In Section 2, we
formulate a pore-scalemodel of nonlinear crystal dissolution–
precipitation, and identify the Damköhler and Péclet numbers
as dimensionless parameters that control the phenomenon. In
Section 3, we employ a multiple-scale expansion (Auriault
and Adler, 1995; Hornung, 1997) to derive an effective ARDE
and to specify sufficient conditions that guarantee its validity.
The region of validity of this continuum description is re-
presented by a phase diagram in the (Da, Pe)-space. A number
of special cases are discussed in Section 4. The main results
and conclusions are summarized in Section 5.

2. Problem formulation

Consider reactive transport in a porous medium Ω̂ whose
characteristic length is L. Let us assume that the medium can
be represented microscopically by a collection of spatially
periodic “unit cells” Ŷwith a characteristic length ℓ, such that
a scale parameter ε≡ℓ/L≪1. Spatially periodic representa-
tions of micro-structures of porous media are routinely used
to derive macroscopic properties and effective models of
phenomena taking place in disordered media that lack such
periodicity (Nitsche and Brenner, 1989, Section 2). The unit
cell Ŷ=B ̂∪ Ĝ consists of the pore-space B ̂ and the imperme-
able solid matrix Ĝ that are separated by the smooth surface Γ̂.
The pore-spaces B ̂ of each cell Ŷ form the multi-connected
pore-space domain B ̂ ε⊂Ω̂bounded by the smooth surface Γ̂ε.

2.1. Governing equations

Single-phase flow of an incompressible fluid in the pore-
space B ̂ ε is described by the Stokes and continuity equations
subject to the no-slip boundary condition on Γ̂ε,

̂ν ĵ2
v̂ε− ĵ ̂p = 0; ĵ⋅v̂ε = 0; x̂∈ B̂ε

; v̂ε = 0; x̂∈ ̂Γ
ε
;

ð1Þ

where v̂ε (x̂) is the fluid velocity, p̂ denotes the fluid dynamic
pressure, and ̂ν is the dynamic viscosity. The fluid contains a
dissolved species M, whose molar concentration c ̂ε(x̂ ,t)̂
[molL−3] at point x̂∈Bε̂and time t ̂N0 changes due to advection,
molecular diffusion, and a nonlinear heterogeneous reaction at
the solid–liquid interface Γ̂ε. The first two phenomena are
described by an advection–diffusion equation,

∂ ̂cε
∂ ̂t

+ v̂ε⋅ ĵ ̂cε = ĵ⋅ D̂ĵ ̂cε
� �

; x̂∈ ̂Bε
; ̂t N 0; ð2Þ

where the molecular diffusion coefficient D̂ is, in general, a
positive-definite second-rank tensor. If diffusion is isotropic,
D̂=D̂mI where D̂m [L2T−1] is the diffusion coefficient and I is
the identity matrix.

Whenever the concentration ĉε exceeds a threshold value
c-, a heterogeneous reaction nM↔N (s) occurs, in which n
molecules of the solute M precipitate in the form of one
molecule of a crystalline solid N (s). At the solid–liquid
interface Γ̂ε impermeable to flow, mass conservation requires
that mass flux of the speciesM be balanced by the difference
between the precipitation rate Rp and the dissolution rate Rd,

−n⋅D̂ĵ ̂cε = Rp−Rd; ð3Þ

where n is the outward unit normal vector of Γ̂ε. Following
(Knabner et al., 1995), we assume that Rp= k̂c ̂ε

a and Rd= k̂c−a,
where k̂ [L3a−2 T−1 mol1−a] is the reaction rate constant,
a∈Z+ is related to the order of reaction n (Morse and
Arvidson, 2002, Eq. 6), and the threshold concentration c–

represents the solubility product (Morse and Arvidson, 2002).
Mass conservation on the liquid–solid interface Γ̂ε yields a
boundary condition (Morse and Arvidson, 2002, Eq. 5),

−n⋅D̂ĵ ̂cε = k̂ ̂caε−
�c a� �

; x̂∈ ̂Γ
ε
; ̂t N 0: ð4Þ

In addition to Eq. (4), the flow and transport Eqs. (1) and
(2) are supplemented with proper boundary conditions on
the external boundary of the flow domain Ω̂ .

2.2. Dimensionless formulation

Let us introduce dimensionless quantities

cε =
̂cε
c
; x =

x̂

L
; vε =

v̂ε

U
; D =

D̂

D
; p =

̂pℓ2

̂νUL
; ð5Þ

where D and U are characteristic values of D̂ and v̂ε,
respectively. The scaling of pressure p ̂ ensures that the
pressure gradient and the viscous term are of the same order
of magnitude, as prescribed by the Stokes equations (Auriault
and Adler, 1995, Eqs. 15 and 16). Furthermore, we define
three time scales associated with diffusion (t̂D), reactions (t̂R)
and advection (t̂A) as

̂tD =
L2

D
; ̂tR =

L
̂kca−1

; ̂tA =
L
U
: ð6Þ

Ratios between these time scales define the dimensionless
Damköhler (Da= t ̂D/ t̂R) and Péclet (Pe= t D̂/ t ̂A) numbers,

Da =
L ̂k c–a−1

D
and Pe =

UL
D

: ð7Þ
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Rewriting Eqs. (1)–(4) in terms of the dimensionless
quantities (5) and the dimensionless time t= t ̂/ tD̂ yields a
dimensionless form of the flow equations

ε2∇2
vε−∇p = 0; ∇⋅vε = 0; x∈Bε

; ð8Þ

subject to

vε = 0; x∈Γε; ð9Þ

and a dimensionless form of the transport equation

∂cε
∂t + ∇⋅ −D∇cε + Pevεcεð Þ = 0; x∈Bε

; t N 0; ð10Þ

subject to

−n⋅D∇cε = Da caε−1
� �

; x∈Γε; t N 0: ð11Þ

2.3. Periodic geometry and periodic coefficients

The boundary-value problems (8)–(9) and (10)–(11) are
defined for the pore-space Bε composed of periodically
repeating unit cells B. These problems have constant coeffi-
cients (the fluid viscosity ν and the molecular diffusion
coefficient D) but have to be solved in the highly irregular
flow domain Bε. Alternatively, one can define these problems
on a regular domain, the porous mediumΩ composed of both
the solid matrix G and the pore space B, by introducing
spatially varying coefficients. This is accomplished as follows
(see (Hornung, 1997) for more details).

Let us introduce a scaled membership function πεðxÞ =
πεðx= εÞ, where πεðxÞ is an indicator (membership) function

πðxÞ = 1; x∈B
0; x∈G:

�
ð12Þ

Then one can define spatially varying coefficients everywhere
in the domain Ω,

DεðxÞ≡πεðxÞD; νεðxÞ≡πεðxÞν; x∈Ω: ð13Þ

By construction, the functions DεðxÞ and νεðxÞ are periodic
with the period Y determined by the unit cell size. Eqs. (8)
and (10) can now be defined on the domain Ω,

ε2νε∇
2
ṽε−∇p̃ε = 0;

∂c̃ε
∂t + ∇⋅ −Dε∇c̃ε + Peṽεc̃εð Þ = 0;

x∈Ω;

ð14Þ
where the state variables (ṽε, p̃ε, c̃ε) are respective extensions
to Ω of their counterparts (vε, pε, cε). The two sets of these
state variables coincide in Bε (Hornung, 1997, pp.14,15, and
46).

3. Homogenization via multiple-scale expansions

Homogenization aims to derive effective equations for
averaged state variables that are representative of an aver-
aging volume (e.g., Darcy-scale). To this end, three types of
local averages of a quantity A(x) can be defined,

〈A〉≡ 1
jY j ∫

BðxÞ
Ady; 〈A〉B≡

1
jB j ∫

BðxÞ
Ady; 〈A〉Γ≡

1
jΓ j ∫

ΓðxÞ
Ady;

ð15Þ

where Ah i=ϕ Ah iB and ϕ=|B| / |Y| is the porosity. In the
subsequent derivation of effective (continuum- or Darcy-
scale) equations for average flow velocity 〈v(x)〉 and solute
concentration 〈c(x, t)〉, we employ the method of multiple-
scale expansions (Auriault and Adler, 1995; Hornung, 1997).

3.1. Upscaled flow equations

Upscaling of the Stokes Eqs. (8) and (9) at the pore-scale
to the continuum scale has been the subject of numerous
investigations, including those relying on multiple-scale
expansions (Auriault and Adler, 1995; Hornung, 1997;
Mikelic et al., 2006). These studies have demonstrated that
Darcy's law and the continuity equation for 〈v〉,

〈v〉 = −K⋅∇p0; ∇⋅〈v〉 = 0; x∈Ω; ð16Þ

provide an effective representation of the pore-scale Stokes
flow (e.g., Hornung, 1997, Eq. 4.7). Such homogenization
procedures also enable one to formally define the dimen-
sionless permeability tensor K in Eq. (16) as the average,
K= 〈k(y)〉, of a “closure variable” k(y). The latter is the
unique solution of a local, or unit cell, problem (e.g., Hornung,
1997, pp. 46–47, Theorem 1.1; and Auriault and Adler, 1995,
Eq. 22)

∇2
k + I−∇a = 0; ∇⋅k = 0; y∈B ð17Þ

subject to the boundary condition k(y)=0 for y∈Γ. The
vector a is Y-periodic and satisfies the condition 〈a〉=0.
Consequently, the second-order tensor k is Y-periodic as well.

3.2. Upscaled transport equation

The method of multiple-scale expansions introduces a fast
space variable y and two time variables τr and τa,

y =
x

ε
; τr = tDa =

t̂

t̂R
; τa = tPe =

t̂

t̂A
: ð18Þ

Furthermore, it represents the concentration cε(x, t) in
Eq. (10), or its counterpart in Eq. (14), as cε(x, t):=c(x, y, t,
τr, τa). The latter is expanded into an asymptotic series in
powers of ε,

c x;y; t;τr; τað Þ = ∑
∞

m=0
εmcm x;y; t;τr; τað Þ; ð19Þ

wherein cm(x, y, t, τr, τa) (m=0, 1, …) are Y-periodic in y.
Finally, we set

Pe = ε−α and Da = εβ; ð20Þ
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with the exponents α and β determining the system behavior.
For example, transport due to advection and dispersion at the
pore scale is not homogenizable if α≥2 (Auriault and Adler,
1995, Section 3.5, Table 1).

We show in the Appendix that pore-scale reactive transport
processes described by Eqs. (10)–(11) can behomogenized, i.e.,
approximated up to order ε2 with an effective ADRE

ϕ
∂〈c〉B
∂t = ∇⋅ðD⁎∇〈c〉B−Pe〈c〉B〈v〉Þ−ε−1ϕDaK⁎ð〈c〉aB−1Þ;

x∈Ω;

ð21Þ
provided the following conditions are met:

1) ε≪1,
2) Pebε−2,
3) Da/Pebε,
4) Dab1,
5) 〈χ〉Γ≈ 〈χ〉B.

In Eq. (21), the dimensionless effective reaction rate
constant K4 is determined by the pore geometry,

K4 =
jΓ j
jB j ; ð22Þ

and the dispersion tensor D⁎ is given by

D⁎ = 〈DðI + ∇yχÞ〉 + εPe〈χk〉∇xp0: ð23Þ

The closure variable χ(y) has zero mean, 〈χ〉=0, and is
defined as a solution of the local problem

−∇y⋅Dð∇yχ + IÞ + εPev0∇yχ = εPeð〈v0〉B−v0Þ;y∈B;
ð24aÞ

−n⋅Dð∇yχ + IÞ = 0;y∈Γ; ð24bÞ

where v0 = −k⋅∇xp0 and the pressure p0 is a solution of the
effective flow Eq. (16).

Constraints 1)–4) ensure the separation of scales. While
constraint 1) is almost always met in practical applications, the
rest of them depend on the relative importance of advective,
diffusive, and reactive mechanisms of transport. These condi-
tions are summarized in the phase diagram in Fig. 1, where the
line β=0 corresponds to Da=1 and the half-space βN0 to
Dab1 because εb1; the line α=2 corresponds to Pe=ε−2 and
the half-space αb2 corresponds to Pebε−2; the line α+β=1
corresponds to Da/Pe=ε; and the half-space underneath this
line corresponds to Da/Pebε. Constraints 3) and 4) require that
either diffusion or advection–diffusion dominate reactions at
the pore scale. This allows one to decouple the pore- and
continuum-scale descriptions (see Appendix A.2). Constraint 5)
is not required for scale separation, but facilitates the derivation
of theeffectiveparameters (22) and (23). As shown inAppendix
A.3, this constraint allows one to interchange the surface and
volume averages, 〈c1〉Γ≈〈c1〉B , within errors on the order of ε2.

The results above generalize the conclusions of the analysis
of reactive–diffusive transport (Battiato et al., 2009), which
reliedon themethodof volumeaveraging.While usingdifferent
upscalingapproaches, both analyses provide the sameboundon
the Damköhler number Da in the absence of advection. The
effective reaction rate K4 for heterogeneous reactions (22) is
likewise consistent with that obtained in (Battiato et al., 2009).
This suggests that the conditions for thevalidity andbreakdown
of continuum models of reactive transport presented in the
phase diagram in Fig. 1 are universal and independent of an
upscalingmethod. Finally, these upscaling results justify the use
of reaction terms similar to the one in Eq. (21) in continuum
models of precipitation and dissolution processes in porous
media (e.g., Broyda et al., 2010; Lichtner and Tartakovsky 2003;
Tartakovsky et al., 2009).

4. Special cases

In this section, we explore specific flow and transport
regimes under which general forms of the upscaled Eq. (21)
and the closure problem (24) can be simplified. Specifically,
we demonstrate how the conditions identified in (Auriault
and Adler, 1995) for advection–dispersion transport of
conservative solutes can be derived from Eqs. (21) and (24).
As brieflymentioned in Section 2 and thoroughly discussed in
Appendix A.2, constraints 3) and 4) ensure that reactions are
negligible at the pore level. Hence, the following regimes are
either diffusion or advection–diffusion dominated at the pore
scale.

4.1. Transport regime with ε≤Peb1

In this regime (−1≤αb0), diffusion dominates advection
at the macro-scale and Eq. (21) reduces to a dispersion–
reaction equation

εϕ
∂〈c〉B
∂t = ε∇x⋅ D⁎∇x〈c〉B

� �
−DaϕK⁎ 〈c〉aB−1

� �
; ð25Þ

where D⁎ = 〈DðI + ∇yχÞ〉 and the closure problem (24)
simplifies to

−∇y⋅Dð∇yχ + IÞ = 0; y∈B; ð26aÞ

n⋅Dð∇yχ + IÞ = 0; y∈Γ: ð26bÞ

The magnitude of the Damköhler number Da determines
the effects of chemical reactions on transport.

4.1.1. Diffusion dominates reactions, Dabε
In this regime (βN1, the dot-patterned region in Fig. 1), the

diffusion term in the macro-scale Eq. (25) dominates the
reaction term, so that Eq. (25) simplifies to a non-reactive
dispersion equation

ϕ
∂〈c〉B
∂t = ∇⋅ D⁎∇〈c〉B

� �
; ð27Þ

which coincides with Eqs. (45) and (46) in (Auriault and Adler,
1995).

4.1.2. Diffusion and reaction are comparable, Da=ε
In this regime (β=1, the reddot in Fig. 1), the reaction term

in the effective Eq. (25) cannot be neglected. Reactive transport
at the macro-scale is described by the dispersion-reaction
Eq. (25).



Fig. 1. Phase diagram indicating the range of applicability of macroscopic equations for the advection–reaction–diffusion system (10)–(11) in terms of Pe and Da
The grey region identifies the sufficient conditions under which themacroscopic equations hold. In thewhite region, macro- andmicro-scale problems are coupled
and have to be solved simultaneously. Also identified are different transport regimes depending on the order of magnitude of Pe and Da. Diffusion, advection, and
reaction are of the same order of magnitude at the point (α, β)=(1, 0).
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4.2. Transport regime with 1≤Pebε−1

In this regime (0≤αb1), the effects of advection and
diffusion at the macro-scale are of the same order. While the
advective termcanbeneglected in the closure problem(24), it
has to be retained in the effective Eq. (21). Consequently,
reactive transport at the macro-scale is described by the
advection–dispersion-reaction Eq. (21) with the effective
dispersion tensor D⁎ = 〈DðI + ∇yχÞ〉, in which the closure
variable χðyÞ is a solution of Eqs. (26).

4.2.1. Diffusion and advection dominate reactions, Dabε
In this regime (βN1, the horizontal-line-patterned region in

Fig. 1), Eq. (21) reduces to a non-reactive advection–dispersion
equation

ϕ
∂〈c〉B
∂t = ∇⋅ D⁎∇〈c〉B

� �
−Pe∇⋅ 〈c〉B〈v〉ð Þ; ð28Þ
.

and the closure problem is given by Eqs. (26). This upscaled
model is identical to that derived in (Auriault and Adler, 1995,
Eqs. 46 and 51) for advection–dispersion transport of passive
solutes.

4.2.2. Diffusion and reactions are comparable, ε≤Dab1
In this regime (0bβ≤1, the square-patterned region in

Fig. 1), pore-scale transport is still diffusion driven, and χ and
D⁎ are defined by Eqs. (26) and D⁎ = 〈DðI + ∇yχÞ〉,
respectively. At the macro-scale, the reaction term is not
negligible, so that the effective transport Eq. (21) is to be used.

4.3. Transport regime with ε−1≤Pebε−2

In this regime (1≤αb2), advection dominates diffusion at
the macro-scale and transport is described by Eq. (21). Since
at the pore scale these two transport mechanisms are of the
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same order, the effective dispersion tensor D⁎ is given by Eq.
(23) and the closure variableχ is obtained by solving the cell
problem (24). The magnitude of the Damköhler number Da
determines the following sub-regimes.

4.3.1. Diffusion dominates reactions, Dabε
In this regime (βN1, the diagonal-line-patterned region in

Fig. 1), diffusion dominates reactions at the continuum scale.
The effective transport Eq. (21) reduces to Eq. (28) wherein
the dispersion tensor D⁎ is given by Eq. (23). The latter
transport model coincides with that derived in (Auriault and
Adler, 1995, Eqs. 61, 65, 68).

4.3.2. Diffusion and reactions are comparable, ε≤Dab1
In this regime (0bβ≤1, the vertical-line-patterned region

in Fig. 1), transport is advection-dominated (reactions are
negligible) at the pore-scale, but diffusion and reactions at the
macro-scale are of the same order of magnitude. Hence, both
the effective dispersion tensor D⁎ and the closure variable χ
are defined as in Section 4.3.1, and the effective transport
model is the advection–dispersion-reaction Eq. (21).

5. Conclusions

Reactive transport in porous media is a complex nonlinear
phenomenon that often involves both homogeneous and
heterogeneous reactions of (bio-)chemical species dissolved
in a liquid phase. The relative importance of advection,
molecular diffusion, and reactions (three key pore-scale
transport mechanisms) is quantified by the Péclet (Pe) and
Damköhler (Da) numbers.We considered transport of a solute
that undergoes nonlinear heterogeneous reactions: after
reaching a threshold concentration, it precipitates on the
solid matrix to form a crystalline solid. The main goal of this
study was to establish sufficient conditions under which
macroscopic advection–dispersion-reaction equations
(ADREs) provide an accurate description of pore-scale
processes. To accomplish this, we used multiple-scale expan-
sions to upscale to the continuum (Darcy) scale a pore-scale
advection–diffusion equationwith reactions entering through
a boundary condition on the fluid–solid interfaces. Our
analysis leads to the following major conclusions.

1. The range of applicability of macroscopic ADREs and
various transport regimes can be described with a phase
diagram in the (Da, Pe)-space (Fig. 1). The latter is param-
eterized with the scale-separation parameter ε that is
defined as the ratio of characteristic lengths associated
with the pore- and macro-scales.

2. This phase diagram reveals that transport phenomena
dominated at the pore scale by reaction processes do not
lend themselves to macroscopic (upscaled) descriptions.
Under these conditions, the validity of assumptions and
approximations underlying macroscopic ADREs, such as
Eq. (21), cannot be ascertained a priori.

3. The constraints on Pe and Da obtained in the present
analysis are consistent with those derived for diffusion-
reaction transport in (Battiato et al., 2009) by means of
volume averaging, which suggests that these results are
universal, i.e., are independent of the choice of an upscaling
technique.
4. The constraints on Pe derived in (Auriault and Adler, 1995)
follow from our formulation as special cases.

5. For transport regimes, in which continuum (Darcy-scale)
equations breakdown, nonlocal (integro-differential) or hy-
brid pore-scale/continuum-scale models should be used, as
they provide a more rigorous alternative to classical upscaled
models based on closure assumptions and approximations.

In follow-up studies we will develop hybrid algorithms
that couple a pore-scale model in the regions where the
validity of macro-scale models cannot be ascertained a priori
with continuum descriptions elsewhere in a computational
domain.
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Appendix A. Homogenization of transport equations

Replacing cε(x, t) with c(x, y, t, τr, τa) gives the following
relations for the spatial and temporal derivatives,

∇cε = ∇xc +
1
ε
∇yc ðA:1Þ

and

∂cε
∂t =

∂c
∂t + Da

∂c
∂τr

+ Pe
∂c
∂τa

: ðA:2Þ

Substitution of Eqs. (A.1) and (A.2) into Eqs. (10) and (11)
yields

∂c
∂t + Da

∂c
∂τr

+ Pe
∂c
∂τa

+ ∇x⋅ −D ∇xc + ε−1∇yc
� �

+ Pevc
h i

+ ε−1∇y⋅ −D ∇xc + ε−1∇yc
� �

+ Pevc
h i

= 0; y∈ B
ðA:3Þ

and

−n⋅D ∇xc + ε−1∇yc
� �

= Da ca−1
� �

; y∈Γ; ðA:4Þ

respectively. Substituting Eqs. (19) and (20) into Eq. (A.3)
leads to

ε−2 ∇y⋅ −D∇yc0 + ε1−αc0v0

� �h i

+ ε−1f−∇x⋅D∇yc0−∇y⋅D ∇yc1 + ∇xc0
� �

+ ε1−α ∂c0
∂τa

+ εα + β∂c0
∂τr

+ ∇x⋅ c0v0ð Þ + ∇y⋅ c1v0 + c0v1ð Þ
� �g

+ ε0f∂c0
∂t −∇x⋅D ∇xc0 + ∇yc1

� �
−∇y⋅D ∇xc1 + ∇yc2

� �

+ ε1−α½∂c1∂τa
+ εα + β∂c1

∂τr
+ ∇x⋅ c1v0 + c0v1ð Þ

+ ∇y⋅ c1v1 + c0v2 + c2v0ð Þ�g= O εð Þ; y∈B:
ðA:5Þ
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Similarly, boundary condition (A.4) can be written as

ε−1 −n⋅D∇yc0
� �

+ ε0 −n⋅D ∇xc0 + ∇yc1
� �

−εβ ca0−1
� �h i

+ ε −n⋅D ∇xc1 + ∇yc2
� �

−εβca−1
0 c1

h i
= O ε2

� �
; y∈ Γ:

ðA:6Þ

Next, we collect the terms of like-powers in ε under
condition that αb2, which is required for the homogeniz-
ability of the advection–dispersion equation (Auriault and
Adler, 1995, Section 3.5, Table 1).

A.1. Terms of order O(ε−2)

Collecting the leading-order terms in Eqs. (A.5) and (A.6),
we obtain a partial differential equation (PDE),

∇y⋅ −D∇yc0 + ε1−αc0v0

� �
= 0; y∈B; ðA:7Þ

subject to the boundary condition

−n⋅ D∇yc0
� �

= 0; y∈Γ: ðA:8Þ

The homogeneity of both Eqs. (A.7) and (A.8) ensures that
this boundary-value problem has a trivial solution, i.e., that c0
is independent of y,

c0 = c0 x; t; τr ;τað Þ; for any α b 2: ðA:9Þ

Note that this result does not require the convoluted
analysis presented in (Auriault and Adler, 1995, Eqs. 48).

A.2. Terms of order O(ε−1)

Since∇yc0≡0, the next order terms in Eqs. (A.5) and (A.6)
give rise to a PDE

−∇y⋅D ∇yc1 + ∇xc0
� �

+ ε1−α½ ∂c0∂τa
+ εα + β ∂c0

∂τr
+ ∇x⋅ c0v0ð Þ

+ ∇y⋅ c1v0 + c0v1ð Þ�= 0; y∈B: ðA:10Þ

subject to the boundary condition

−n⋅D ∇xc0 + ∇yc1
� �

−εβ ca0−1
� �

= 0; y∈ Γ: ðA:11Þ

Integrating Eq. (A.10) over B with respect to y, while
accounting for the no-slip boundary condition on Γ, the
boundary condition (A.11), and the periodicity of the
coefficients on the external boundary of the unit cell ∂Y, we
obtain

ε1−α ∂co
∂τa

+ ε1+β ∂c0
∂τr

= −ε1−α∇x⋅ c0〈v0〉Bð Þ−εβK* ca0−1
� �

ðA:12Þ
where K⁎ is defined by Eq. (22).
Combining Eq. (A.12) with Eq. (A.10) to eliminate the
temporal derivatives, we obtain

ε1−α −∇x⋅ c0〈v0〉Bð Þ−εα + β−1K⁎ ca0−1
� �

+ ∇x⋅ c0v0ð Þ
h i

+ ∇y⋅ c1v0 + c0v1ð Þ−∇y⋅D ∇yc1 + ∇xc0
� �

= 0:

ðA:13Þ

Since ∇y ⋅v0=0 (Auriault and Adler, 1995, Eq. 20),
∇x⋅〈v0〉B=0 (Auriault and Adler, 1995, Eq. 26), ∇y⋅v1+
∇x⋅v0=0 (Auriault and Adler, 1995, Eq. 25), and ∇yc0=0
from Eq. (A.9), this gives

ε1−α½ðv0−〈v0〉BÞ∇x⋅c0−εα + β−1K⁎ðca0−1Þ + v0∇y⋅c1�

−∇y⋅Dð∇yc1 + ∇xc0Þ = 0:
ðA:14Þ

Eqs. (A.14) and (A.11) form a boundary-value problem for
c1. Following (Auriault and Adler, 1995, Eq. 40) and
(Hornung, 1997, p. 10, Eqs. 3.6–3.7), we look for a solution
in the form

c1 x;y; t;τr; τað Þ = χðyÞ⋅∇xc0 x; t;τr; τað Þ + c–1 x; t; τr ;τað Þ:
ðA:15Þ

Substitution of Eq. (A.15) into Eqs. (A.14) and (A.11) leads
to the following cell problem for the closure variable χ(y):

−∇y⋅D ∇yχ + I
� �

+ ε1−α
v0⋅∇yχ

h i
⋅∇xc0

= ε1−α 〈v0〉B−v0ð Þ⋅∇xc0 + εβK4 ca0−1
� �

; y∈B;
ðA:16aÞ

subject to 〈χ〉=0 and

− n⋅D ∇yχ + I
� �h i

⋅∇xc0 = εβ ca0−1
� �

; y∈Γ: ðA:16bÞ

Note that χ(y) is a Y-periodic vector field.
The boundary-value problem (A.16) couples the pore

scale with the continuum scale, in the sense that the closure
variable χ(y)—a solution of the pore-scale cell problem
(A.16)—is influenced by the continuum scale through its
dependence on the macroscopic concentration c0(x). This
coupling is incompatible with the general representation
(A.15). This inconsistency is resolved by imposing the
following constraints on the exponents α and β.

We start with the boundary condition in Eq. (A.16b),
whose left-hand-side is of order ε0. If we chose β N 0, then the
right-hand-side, which is of order εβ, can be neglected since
ε≪1 (Constraint 1 of Section 3.2). Next, we observe that for
the term εβK⁎(c0a−1) to be negligible relative to the smallest
term in Eq. (A.16a) it is necessary that βNmax{0, 1−α}. Since
homogenizability of pore-scale advection–diffusion transport
of a conservative solute requires that α b 2 (Auriault and
Adler, 1995, Section 3.5, Table 1), this condition yields either
β+αN1 if α b1 or βN0 if 1bαb 2.

The selection of proper α and β ensures that χ is inde-
pendent of c0. The dependence of χ on ∇xc0 is eliminated by
defining χ as a solution of the related cell problem (24).
Finally, recalling the definitions of Da and Pe in Eq. (20)
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allows us to reformulate the conditions on α and β in the form
of constraints 2)–4) of Section 3.2.

Having identified the conditions that guarantee homoge-
nizability, we proceed to derive the effective transport Eq. (21).

A.3. Terms of order O(ε0)

Collecting the zeroth-order terms in Eqs. (A.5) and (A.6),
we obtain

∂c0
∂t −∇x⋅D ∇xc0 + ∇yc1

� �
−∇y⋅D ∇xc1 + ∇yc2

� �

+ ε1−α½ ∂c1∂τa
+ εα + β ∂c1

∂τr
+ ∇x⋅ c1v0 + c0v1ð Þ

+ ∇y⋅ c1v1 + c0v2 + c2v0ð Þ�= 0; y∈B;

ðA:17Þ

with the boundary condition

−n⋅D ∇xc1 + ∇yc2
� �

−aεβca−1
0 c1 = 0; y∈ Γ: ðA:18Þ

Integrating Eq. (A.17) over B with respect to y and using
the boundary condition (A.18) leads to

∂〈c0〉B
∂t −∇x⋅ ϕ−1

D
44∇xc0

� �
+ aεβK4ca−1

0 〈c1〉Γ

+ ε1−α ∂〈c1〉B
∂τa

+ εα + β ∂〈c1〉B
∂τr

+ ∇x⋅ 〈c1v0〉B + c0〈v1〉Bð Þ
� �

= 0

ðA:19Þ

where D⁎⁎ = 〈DðI + ∇yχÞ〉. Combining Eq. (A.19) with Eq.
(A.15), while making use of (A.18), the definition |Γ|〈c1〉Γ=
∫Γc1dy, and the relations c0= 〈c0〉B and v0 = −kðyÞ⋅∇xp0
(Auriault and Adler, 1995, Eq. 21), we obtain

∂〈c0〉B
∂t + ε1−α ∂〈c1〉B

∂τa
+ ε1+β ∂〈c1〉B

∂τr
= ∇x⋅ ϕ−1

D
4∇xc0

� �

−aεβK4ca−1
0 〈c1〉Γ−ϕ−1ε1−α∇x⋅ c0〈v1〉 +c–1〈v0〉

� �
;

ðA:20Þ

where D⁎ðxÞ is given by Eq. (23).
Next we recall that

〈c〉B = 〈cε〉B = 〈c0〉B + ε〈c1〉B + O ε2
� �

: ðA:21Þ

Multiplying the temporal derivative of Eq. (A.21) with ε,
using Eq. (20), and recognizing that ∂〈c1〉B/∂t is of order ε2, we
obtain

ε
∂〈c〉B
∂t = εβ + 1 ∂〈c0〉B

∂τr
+ ε1−α ∂〈c0〉B

∂τa

	 


+ ε
∂〈c0〉B
∂t + εβ+1 ∂〈c1〉B

∂τr
+ ε1−α ∂〈c1〉B

∂τa

	 

+ O ε2

� �
:

ðA:22Þ
Multiplying Eq. (A.20) with ε, adding the result to Eq.
(A.12), and using Eq. (A.22), we obtain

ε
∂〈c〉B
∂t = ε∇x⋅ ϕ−1

D⁎∇〈c0〉B
� �

−ϕ−1ε1−α∇

⋅ 〈c0〉〈v0〉B + εc0〈v1〉 +ε c–1〈v0〉
� �

+ εβK⁎ 1−ca0−aεca−1
0 〈c1〉Γ

� �
:

ðA:23Þ

Since c 1̅=〈c1〉B (i.e., 〈χ〉=ϕ〈χ〉B=0) and 〈c0〉B〈v0〉 =
〈c0〉B〈v0〉, an expansion

〈c〉B〈v〉 = 〈c0〉B〈v0〉 + ε〈c0〉B〈v1〉 + ε〈c1〉B〈v0〉 + O ε2
� �

ðA:24Þ
gives

〈c〉B〈v〉 = 〈c0〉〈v0〉B + εc0〈v1〉 + εc1〈v0〉 + O ε2
� �

: ðA:25Þ

Combining this result with an expansion ε〈c〉B=ε〈c0〉B+
O(ε2)=εc0+O(ε2) allows one to express the diffusive term
in Eq. (A.23) in terms of 〈c〉B , which leads to

ϕ
∂〈c〉B
∂t = ∇x⋅ D⁎∇x〈c〉B

� �
−Pe∇x⋅ 〈c〉B〈v〉ð Þ

+ ε−1DaϕK⁎ 1−〈c0〉
a
B−aε〈c0〉

a−1
B 〈c1〉Γ

� �
:

ðA:26Þ

If one can assume that 〈χ〉Γ≈ 〈χ〉B , then 〈c1〉Γ≈ 〈c1〉B and

〈c0〉
a
B + εa〈c0〉

a−1
B 〈c1〉Γ≈〈c0〉

a
B + εa〈c0〉

a−1
B 〈c1〉B

= 〈c〉aB + O ε2
� �

:

ðA:27Þ

The previous approximation can be derived by observing
that

〈c〉aB = 〈c0〉B + ε〈c1〉Bð Þa + O ε2
� �

= ∑
λ0 + λ1 =a

λ1b2
0≤λi∈ℤ

a

λ0;λ1

 !
ελ1 〈c0〉

λ0
B 〈c1〉

λ1
B

= 〈c0〉
a
B + εa〈c0〉

a−1
B 〈c1〉B + O ε2

� �
:

ðA:28Þ

Substitution of Eq. (A.27) into Eq. (A.26) leads to Eq. (21),
which governs the dynamics of 〈c〉B up to ε2.
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