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In this work we use a multiscale framework to calculate the fluidization threshold of three-dimensional
cohesive granulates under shear forces exerted by a creeping flow. A continuum model of flow through porous
media provides an analytical expression for the average drag force on a single grain. The balance equation for
the forces and a force propagation model are then used to investigate the effects of porosity and packing structure
on the stability of the pile. We obtain a closed-form expression for the instability threshold of a regular packing
of monodisperse frictionless cohesive spherical grains in a planar fracture. Our result quantifies the compound
effect of structural (packing orientation and porosity) and dynamical properties of the system on its stability.
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I. INTRODUCTION

Granulates are a large collection of macroscopic solid
grains. Dry and wet granulates are vital in a large variety of
industries, ranging from pharmaceutical to mining [1], from
construction [2] to agricultural [1]. They also play an important
role in many geological processes, such as land and mudslides
[3], debris flows [4], erosion, particles’ resuspension by wind
in humid regions [5], and dune formation [6] that shape
planets’ morphology including, but not limited to, Earth [7].

Most theoretical and experimental studies focus on dry
granulates and their collective behavior including pattern
formation [7,8], angle of stability and repose [9,10], avalanch
dynamics [11,12], and granular flows [13,14]. However,
adding even a small quantity of liquid to a sandpile dramati-
cally changes its properties.

Cohesive interactions due to capillarity exist in three-phase
systems such as partially saturated granulates where solid
grains, wetting and nonwetting fluids (e.g., water and air)
coexist. The existence of a cohesive force between grains
leads to fundamentally different dynamics in wet granulates
compared to their dry (i.e., noncohesive) counterpart. Such
differences include stability of granular piles and the location
in a granular bed where incipient motion, either due to gravity
[4,15,16] or shearing [17–20], is first observed.

The collective behavior of cohesive grains has only recently
begun to be explored. A number of studies have focused on
the dynamics of wet granular avalanches [21] and on the effect
of humidity [22–24] and capillary forces [15,25,26] on the
static properties of granulates in both engineering applications
[23] and natural systems (e.g., soil) [27]. A number of
different models have been proposed to study the geometric
stability of wet piles, including Mohr-Coulomb continuum
[28], liquid-bridge [15], and response function [16,29,30]
models.

While such models are invaluable in shedding light into
the properties of cohesive granulates, natural systems often
include a number of additional forcing factors that might sig-
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nificantly affect the stability of granulates in the environment.
In geological systems, instability is triggered by a combination
of body forces (e.g., gravity) and dynamic shearing due to
the creeping motion of a fluid through the granulate. This
is especially true in processes such as cliff instability and
landslides, sediment transport in submerged environments
(e.g., seafloor transport), and fluidization of fines in fractures
during pumping operations or oil recovery, just to mention
a few. Even though the understanding of how flow-induced
shear forces affect the stability of granular matter is of utmost
importance to better quantify the processes that trigger a
fluidization event, incorporating such effects is a challenging
task since it requires the solution of Navier-Stokes equations
in highly complex geometries.

In the present work we address this problem in a multiscale
framework and quantify the effect of dynamic shearing forces
due to the creeping flow of a fluid (e.g., air) on the onset
of instability (i.e., fluidization) of a cohesive granular pile
(Fig. 1). Explicit analytical solutions are obtained for a model
setting where the granulate is constituted of monodisperse,
frictionless, cohesive grains arranged in a regular packing.
The cohesive interactions are due to the presence of capil-
lary bridges formed by a wetting fluid (e.g., water) at the
contact points between grains. Complications associated with
random packing and friction between particles need not be
taken into account to obtain reasonable results, as shown in
Ref. [15].

In Sec. II, we treat the cohesive granulate as a porous
medium, and introduce a continuum-scale Darcy-Brinkman
model for the flow and the average drag force exerted by the
fluid on the grains. Section III discusses a pore-scale network
model for the force propagation through the pile. Location of
failure and maximum load are derived. In Sec. IV the stability
criterion is formulated in terms of the capillary number, that
represents the relative strength between destabilizing flow-
induced shear and stabilizing capillary (cohesive) forces, and
the packing orientation relative to the average flow direction.
The main results and conclusion are summarized in Sec. V. For
simplicity, gravity is here neglected. Generalization to include
gravity effects is straightforward.
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FIG. 1. (Color online) Schematic of the domain on the left, and
shape of the average velocity profile through the channel on the right.
The grains are assumed to be cohesive.

II. CONTINUUM-SCALE MODEL OF FLOW AND DRAG IN
A BRINKMAN MEDIUM

We consider a fully developed incompressible fluid flow
(e.g., air) between two infinite parallel plates separated by the
distance of H + 2L. The bottom part of the flow domain,
−H < ŷ < 0, is occupied by a packing of cohesive (e.g.,
water-wet) monodisperse rigid frictionless spheres of radius
R. The (air) flow is driven by an externally imposed (mean)
constant pressure gradient dx̂p̂ < 0. Therefore, each spherical
grain is subject to a drag force due to (air) flow-induced
stresses, and attractive capillary bridge forces.

Since we are concerned with the fluidization threshold of
the sphere packing, initially at rest, nonstationarity effects need
not to be taken into account, and the sphere-packed region can
be treated as a porous medium with porosity φ and constant
permeability K . This allows us to decouple an analysis of the
flow from that of the granulate dynamics. We allow the flow
over the granulate to span both laminar and turbulent regimes.
Channel flow through, ŷ ∈ (−H,0), and over, ŷ ∈ (0,2L),
a permeable layer can be described by coupling Brinkman
with Navier-Stokes or Reynolds equations for the horizontal
component û(ŷ) of the average velocity û(û,v̂) [31,32]

μedŷŷ û − μK−1û − dx̂p̂ = 0 ŷ ∈ (−H,0), (1a)

μdŷŷ û − ργ dŷ〈û′v̂′〉 − dx̂p̂ = 0 ŷ ∈ (0,2L), (1b)

where dx̂p̂ is a mean constant pressure gradient, μ and ρ are
the fluid’s dynamic viscosity and density, respectively, and
μe is its “effective” viscosity that accounts for the slip at the
spheres walls. In the laminar regime (γ = 0), û is the actual
velocity and v̂ ≡ 0. In the turbulent regime (γ = 1), the actual
velocity is decomposed into a mean velocity û and velocity
fluctuations û′ and v̂′ about their respective means. In Eq. (1b)
〈û′v̂′〉 denotes the Reynolds stress. Fully developed turbulent
channel flow has velocity statistics that depend on ŷ only.

In both laminar and turbulent regimes, the no-slip condition
requires zero velocity at ŷ = −H and ŷ = 2L, and the
continuity of velocity and shear stress is prescribed at the
interface, ŷ = 0, between the free and filtration flows [33],

û(−H ) = û(2L) = 0, û(0−) = û(0+) = Û ,
(2)

μedŷ û|0− = μdŷû|0+ ,

where Û is an unknown matching velocity at the interface
between channel flow and porous medium.

Choosing (μ,H,q), with q = −μ−1H 2dx̂p̂ a characteristic
Darcy velocity, as the repeating variables, the problem can be
formulated in dimensionless form. Then, inside the granular
medium, the solution for the dimensionless velocity distribu-
tion u = û/q is given by [31]

u(y) = M−1λ−2 + C1eλy + C2e−λy, y ∈ (−1,0), (3a)

where y = ŷ/H , M = μe/μ, δ = L/H , λ2 = H 2/(MK), and

C1,2 = ± 1

Mλ2

(Mλ2U − 1)e±λ + 1

eλ − e−λ
, (3b)

U = 1

βMλ2
(1 − sechλ + δλ tanh λ) , (3c)

with U = Û/q the dimensionless interfacial velocity, and β =
1 or β = 1 + (tanh λ)/(2δMλ) for turbulent or laminar regime
in the channel, respectively. Since the typical spatial scale
associated with the pore space in granulates is much bigger
than the molecular mean-free path of the flowing fluid (e.g.,
microns versus nanometers), the Knudsen number (i.e., the
ratio between the latter and the former) is much smaller than
one. Therefore, M = 1 because the fluid does not experience
any slip on the grains walls. The total drag on a sphere in an
unbounded Brinkman medium is given by [34–36]

F̂ = 6πμRg(φ)V̂, (4)

where V̂ is a uniform velocity at infinity, g(φ) = 1 + 3√
2
(1 −

φ)1/2 + 135
64 (1 − φ) ln(1− φ) +16.456(1 − φ)+ o(1− φ) [37]

and φ is porosity. Permeability, obtained by self-consistent
arguments, is given by K = ksg

−1(φ) [34,35], where ks =
2
9R2(1 − φ)−1 is the well-known Stokes result, for low-
porosity packing of spheres. Since nonuniform velocity effects
in Eq. (3a) are confined to a small region close to the upper
and lower boundaries of the granulate, we employ a vertically
averaged velocity ū(y) to calculate a first-order approximation
of the drag. Therefore, combining Eqs. (3a) and (4), the
dimensionless drag force F(y) := (μqH )−1F̂ = [F (y),0,0] =
F (y)e1 exerted by the fluid on a sphere centered at y, is given
by

F (y) = 3πεg(φ)ū(y), (5)

where ε = 2R/H is the dimensionless grain diameter, ū(y) =
1

2h̄

∫ y+h̄

y−h̄
u(y ′)dy ′ is an average velocity across a layer of

thickness 2h̄, and e1 is the unit vector in the x direction.
In the following section we specialize the analysis to

a regular (cubic) packing of spheres. This will allow us
to determine the network of forces, and consequently the
maximum load, developed inside the pile.

III. FORCE NETWORK MODEL AND MAXIMUM LOAD

A. Geometry and packing

Let the monodisperse cohesive grains be arranged in an
isostatic packing, obtained by expanding a face-centered cubic
packing so to eliminate interlayer contacts, with the (111)-face
of the crystal parallel to the bottom wall of the channel.
Such expanded packing configuration will be referred to as
cubic expanded packing (CEP). From the first two layers of
spheres, a CEP arrangement can be obtained if every third
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FIG. 2. (Color online) (a) Top view of the structure of a two-layer
3-dimensional pile of spheres of dimensionless diameter ε. (b) Sketch
of the tetrahedron obtained by connecting the centers of the 4-sphere
structure (left). The intralayer and iterlayer distances between sphere
centers belonging to either the same or adjacent layers are 
 and h,
respectively. The unit vectors of the canonical orthonormal basis of
the Euclidean space are eα , α = {1,2,3}. The unit vectors along the
lattice directions connecting the center of the supported sphere with
the centers of the supporting spheres are bα , α = {1,2,3}.

layer is the same [38]. Figures 2(a) and 2(b) show the top and
side views of the structure of the first two layers of spheres.
While we focus on such a specific grains arrangement, we
stress that the analysis can be easily generalized to other
regular packing structures. Let 
̂, with 2R < 
̂ < 2

√
3R, be

the pitch in the x-z (horizontal) plane (i.e., the distance
between the centers of spheres belonging to the same layer)
and ĥ the pitch in the y-z (vertical) plane (i.e., the distance
between two adjacent layers) (Fig. 2). The dimensionless
interlayer and intralayer distances h = ĥH−1 and 
 = 
̂H−1,
respectively, are related as follows h = ε[1 − 1

3 (
/ε)2]1/2.

Porosity, φ, amounts to φ = 1 − π [3(
/ε)2
√

3 − (
/ε)2]−1,
with ε < 
 <

√
3ε. When 
 = ε the close packing is recovered

and φ → φc ≈ 0.26, corresponding to the face-centered cubic
packing fraction of spheres, sc = π/3

√
2 ≈ 0.74. If 
 → √

3ε,
h → 0 and the four spheres lie on the same level.

Let N + 1 be the total number of layers in the pile. The
bottom layer of grains is immobile and is called a wall.
Therefore only N layers are mobile. Let n = {1, . . . ,N} denote
the (mobile) layer number. The layer sitting immediately on
the wall has n = 1. The layer enumeration continues moving
up to the topmost layer in the pile where n = N (see Fig. 3).
The number of mobile layers, N , and the height of the pile,
H , are related through H = Nĥ or in terms of dimensionless
quantities N = 1/h.

In the following section a pore-scale force network model
is used to determine the location and the modulus of the
maximum load in the pile.

B. Propagation of forces

Let Fk be the sum of the external forces acting on grain k

(e.g., drag), and gkl = gklbkl the force exerted from grain k

to grain l, where bkl is a unit vector pointing from grain k to
grain l and gkl is the magnitude of the force; gkl is positive for
compressive forces and negative otherwise. Whenever there is
a stretched capillary bridge between two grains k and l, the

wall

...

...

−1 + (N − 1)h
0

y

−1 + ih−1 + (i − 1)h

−1 + h
−1

layer N
layer N − 1

layer i

layer 2
layer 1

FIG. 3. Schematics of the layer enumeration. The dashed horizon-
tal lines represent the location of the contacts between two adjacent
layers of grains.

force exerted by grain k on l is attractive and equal to a constant
value fkl = fbbkl where fb > 0. This simplifying assumption
that the capillary force is a constant, irrespective of grain
separation distance, provides, on the one hand, conservative
bounds on the granulates’ instability, and, on the other, a good
description of collective behavior of wet granulates [16,39,40].
The force distribution can be uniquely determined by solving
the following system for the unknowns gkl

∑
l

gkl = Fk, ∀k,l = 1, . . . ,T , (6)

with T the total number of grains. There is a unique solution
for the force distribution [16,29,30] in d dimensions, if the
packing is isostatic (i.e., if the average number of neighbors
per grain equals 2d). Note, however, that this solution does
not necessarily comply with the constraint that contacts break
when tensile forces exceed the capillary bridge force. Upon
variation of parameters, a regular packing yields when this
additional requirement is first violated (i.e., the packing is
stable as long as gkl + fb > 0, ∀k,l). Specifically, in a regular
isostatic three-dimensional CEP packing of grains bounded by
a solid wall at the bottom and a free surface at the top, each
sphere is supported by d = 3 contacts from grains further
down in the pile. For any couple (k,l) of grains in contact, the
unit vector bkl connecting their centers is aligned to one of the
(three) CEP-lattice directions. The external force (e.g., drag)
exerted on each grain up in the pile propagates unchanged
down through the pile to the first mobile layer (n = 1) along
such directions as discussed in Ref. [16]. Therefore, the
maximum load is experienced from grains at the bottom of
the pile (i.e., n = 1), and the stability threshold is determined
by the respective bonds carrying the highest load. Next, we
calculate the maximum destabilizing force exerted on the
lowermost grains in the pile.

C. Maximum load

From the continuum model solution, the average drag
force F(n) = [F (n),0,0] = F (n)e1 exerted by the fluid on a
grain belonging to layer n can be obtained by setting the
averaging interval in Eq. (5) equal to the layer thickness (i.e.,
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2h̄ = h)

F (n) = 3πε

h
g(φ)

∫ −1+nh

−1+(n−1)h
u(y)dy, n = 1, . . . ,N, (7)

where u(y) is given by Eq. (3). Therefore,

F (n) = 3πε

λh
g(φ)

[
h

Mλ
+ C1eλ(−1+nh)(1 − e−λh) +

− C2eλ(1−nh)(1 − eλh)

]
, (8)

for n = 1, . . . ,N, which gives the drag distribution due to
dynamic shear exerted by the creeping fluid on the cohesive
granular bed. The maximum load F̄, exerted on the grains of
the first layer (n = 1), is

F̄ =
N∑

n=1

F(n). (9)

Combining Eqs. (9) and (7) or (8) we obtain

F̄ = e1
3πε

h
g(φ)

∫ 0

−1
u(y)dy, (10)

which gives

F̄ = 3πε

h
g(φ)Uave1, (11)

where

Uav = 1

Mλ3
[λ + (Mλ2U − 2)(coth λ − cschλ)], (12)

is the average velocity across the granulate, and U is given
by Eq. (3c) for laminar and turbulent regimes above the
granulate.

IV. FLUIDIZATION THRESHOLD

While the maximum destabilizing average force F̄ on each
grain in the bottom layer due to Stokes flow in the pile
is parallel to the channel boundary, the stabilizing capillary
forces act along the lattice directions {b1,b2,b3} [see Fig. 2(b)].
Therefore, if the components of the total force F̄ along such
directions are less than the capillary forces (assumed constant),
the pile is stable: The stability criterion can be formulated
by decomposing the force F̄ onto the nonorthogonal basis
{b1,b2,b3} uniquely identified by the structure of the packing.

In the following, we proceed with the nonorthogonal pro-
jection of the maximum load, which allows us to analytically
calculate the instability threshold while incorporating the
impact of the lattice orientation relative to the average flow
direction. We stress that such approach is readily generalizable
to other packing structures and to incorporate any type of
(de)stabilizing forces (e.g., gravity, friction).

A. Nonorthogonal projection

Let E = {e1,e2,e3} be the canonical orthonormal basis
of the Euclidean space R3 and B = {b1,b2,b3} a generally
nonorthogonal basis with bα unit vectors, and α = {1,2,3}.

Let Fα be the components of the maximum force F̄ in the
canonical basis, and F ′

α its components in the basis B, i.e.,

F̄ =
3∑

α=1

Fαeα =
3∑

α=1

F ′
αbα. (13)

The components of F̄ in the two basis are related through a
linear transformation A,

(F1,F2,F3) = A(F ′
1,F

′
2,F

′
3) (14)

with (F1,F2,F3) and (F ′
1,F

′
2,F

′
3) column vectors, and A the

matrix of direction cosines whose components are defined as
Aαβ = cos(bβ,eα) = bβ · eα .

In the B-coordinate system and for any sphere belonging
to the first mobile layer (i.e., n = 1), Eq. (6) simplifies to

F ′
α = fb α = {1,2,3}, (15)

and the stability criterion is

F ′
α � fb, α = {1,2,3}. (16)

Combining Eqs. (14) and (16) yields to

BαβFβ � fb, α,β = {1,2,3}, (17)

where Bαβ are the components of B := A−1, and Enstein
summation convention is implied whenever an index occurs
twice in a term. If the components of the maximum load Fβ

satisfy the system of (three) equations (17), then the pile is
stable. Alternatively, Eq. (17) can be solved for the unknowns
Fβ , which provide the maximum magnitude of the components
of the load that the capillary forces in the bottom layer can
sustain.

The effect of the packing orientation on the pile stability
can be readily incorporated. Without loss of generality, let us
consider a counterclockwise rotation of the pile (and therefore
of the basis B) around the wall-normal (i.e., y axis) [see
Figs. 4(a) and 4(b)]. Such solid-body rotation is fully described
by the rotation matrix Ry(θ ) defined as

Ry(θ ) =
⎡
⎣ cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎤
⎦ , (18)

where θ is the rotation angle. The matrix of direction cosines
for the rotated system, Aθ , is

Aθ = Ry(θ )A. (19)

b1 b1b2 b2

b3 b3

e3e3 e1

e1 −θ

(a) (b)

F F

FIG. 4. (Color online) Top view of the bottom two layers of a
regular isostatic packing of monodisperse spheres before (a) and after
(b) a counterclockwise rotation θ of the packing.
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The stability criterion, given by Eq. (16), now implies

Bθ,αβFβ � fb, (20)

where Bθ,αβ are the components of Bθ = (Aθ )−1, which gives
a generalized stability criterion for an arbitrary orientation of
the packing structure relative to the average direction of the
aerodynamic drag.

B. Stability diagram

Let us consider the Cartesian coordinate system as depicted
in Fig. 1, where the axis e1 and e2 of the Cartesian basis E are
parallel and orthogonal to the fracture boundary, respectively.
We take the projection of b1 onto the x-z plane parallel to e1 as a
reference configuration for the packing orientation [Fig. 4(a)].
Therefore, the components of the basis vectors {b1,b2,b3} in
the canonical basis E and the matrix of direction cosines A are

b1 = 1

ε

⎡
⎢⎣

√
3

3 


−h

0

⎤
⎥⎦ , b2 = 1

ε

⎡
⎢⎣

−
√

3
6 


−h

− 1
2


⎤
⎥⎦ , b3 = 1

ε

⎡
⎢⎣

−
√

3
6 


−h
1
2


⎤
⎥⎦ ,

A = 1

ε

⎡
⎢⎣

√
3

3 
 −
√

3
6 
 −

√
3

6 


−h −h −h

0 − 1
2
 1

2


⎤
⎥⎦ . (21)

The matrix of direction cosines Aθ after a counterclockwise
rotation of angle θ about e2 axis [Fig. 4(b)] has the following
components

[Aθ ]αβ = 1

ε
Aθ,αβ (22)

where

Aθ,11 =
√

3

3

 cos θ,

Aθ,12 = −
√

3

6

 cos θ − 


2
sin θ,

Aθ,13 = −
√

3

6

 cos θ + 


2
sin θ,

Aθ,21 = Aθ,22 = Aθ,23 = −h, (23)

Aθ,31 = −
√

3

3

 sin θ,

Aθ,32 =
√

3

6

 sin θ − 


2
cos θ,

Aθ,33 =
√

3

6

 sin θ + 


2
cos θ.

Therefore, combining the stability criterion, Eq. (20), with
Eqs. (11), (22), and (23), we obtain the following system of
equations

2
√

3

3

(ε




)
F cos θ < fb

−2
√

3

3

(ε




)
F cos (θ − π/3) < fb (24)

−2
√

3

3

(ε




)
F cos (θ + π/3) < fb,

where F = 3πεh−1g(φ)Uav is the total force exerted by the
fluid and the pile on the first layer of grains (n = 1). The

stability criterion, Eq. (24), can be rewritten as

1 − 2
√

3

3
Ca cos θ > 0

1 + 2
√

3

3
Ca cos (θ − π/3) > 0 (25)

1 + 2
√

3

3
Ca cos(θ + π/3) > 0,

where Ca is a capillary number that incorporates geometrical
effects of the porous structure, and is defined as

Ca = p(ε,
)Uav

fb

, (26)

where p(ε,
) = 3πε2g(φ)/
h incorporates the impact of pore-
scale geometry, and φ and h are uniquely determined for any
fixed (ε,
). Assuming a toroidal shape of the liquid surface
of the capillary bridges, the dimensional capillary force f̂b =
μqHfb can be related to the dimensional surface tension γ̂ =
μqγ and the contact angle η between the wetting liquid (e.g.,
water) and the surface of the spheres by [41]

f̂b = 2πRγ̂ cos η. (27)

Therefore,

Ca = p′(ε,
)

cos η
Ca, (28)

where p′ = 3εg/(
h) and Ca = μÛav/γ̂ is the capillary
number defined in terms of the average velocity Ûav. Solving
Eq. (25) leads to the following stability criterion for the CEP
as a function of packing orientation θ and capillary number
Ca,

Ca <

√
3

2
, stable ∀θ

Ca >
√

3, unstable ∀θ

Ca ∈
(√

3

2
,
√

3

)
, stable if θ ∈

[
acos(

√
3/2Ca),

2

3
π − acos(

√
3/2Ca)

]
. (29)

A graphical representation of Eq. (29) is provided in
Fig. 5. The stability of a pile with CEP arrangement of its
grains is affected by the orientation of the lattice directions
relative to the average velocity of the flow by a factor
of two (Fig. 5): The pile orientation determines how the
destabilizing flow-induced shear forces decompose along the
lattice directions and, consequently, how they are balanced
by the stabilizing capillary forces acting at the contact points.
Combining Eqs. (26) and (27), Ca can be written as follows:

Ca =
(

3με2g(φ)

2γ̂ 
h cos η

)
H

R
Ûav. (30)

Besides the geometrical arrangement and the physical prop-
erties of the wetting and nonwetting fluids [first parenthesis
on the right-hand side in Eq. (30)], two relevant parameters
that control the fluidization threshold are the average velocity
across the granulate and the number of layers, since Ca
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FIG. 5. Fluidization threshold of a wet granulate under flow-
induced shear in terms of packing orientation θ and capillary number
Ca.

is proportional to H/R. While filtration velocities in low
permeability porous media are generally very small, scale
effects play a crucial role in determining whether or not
flow-induced shear might become a significant source of
instability of unconsolidated cohesive granulates.

V. SUMMARY AND CONCLUSION

In many environmental and industrial systems, the insta-
bility of cohesive granulates is triggered by a combination
of body (e.g., gravity), surface (e.g., friction), and (boundary
and/or flow-induced) shearing forces. Flow-induced shear
forces represent an important instability factor in many
systems where fluid flow occurs for example, cliff instability
after heavy rainfall, humid particles’ resuspension by wind,
sediment transport in submerged environments, and pumping
operations during oil recovery, just to mention a few. While a
number of works have focused on the effect of friction, gravity,
and boundary shearing on cohesive granulates instability,
studying the impact of flow-induced shear forces represents
a major challenge since it would a priori require the full
(numerical) solution of Navier-Stokes equations in highly
complex geometry for drag computation.

In this work we use a multiscale framework to account
for the effect of fluid dynamic shearing on the stability of
cohesive granulates. We provide closed-form expressions for
the instability threshold, due to flow-induced shear forces, of
a regular packing of cohesive monodisperse spherical grains
in a planar fracture. Without loss of generality, the analysis
is specialized to cohesive forces of capillary nature. In this
setting, the compound effect of structural (e.g., porosity,
grain contacts distribution, pile orientation) and dynamical
(e.g., capillary and fluid-dynamics forces) properties of the
system on its stability is taken into account. The impact of
packing orientation is also quantified: the orientation of a
CEP pile affects its stability threshold by a factor of two.
Moreover, we identify the capillary number, Ca, Eq. (26),
as the dimensionless parameter that controls the instability
threshold. It is the ratio between destabilizing fluid dynamic
shear forces and stabilizing cohesive (capillary) forces, given
by Eqs. (10) and (27), respectively. It is defined in terms of
the average shearing velocity Ûav, the fluid viscosity μ, the

surface tension γ̂ , the geometrical arrangement of the grains,
the contact angle η between wetting liquid and the surface
of the solid grains, and the ratio between the height of the
pile H and the typical grain diameter R. This implies that,
even though filtration velocities might be very small, creeping
flow might play a key role in the instability of unconsolidated
cohesive granulates due to scale effects. We stress that, while
applied to cohesive capillary forces, the method can also be
used to model any type of cohesive forces (e.g., van der
Waals). Generalization to include gravity and/or friction is
also straightforward.

Idealized systems as those considered in this study can
provide interesting insights on the salient features, for exam-
ple, location of failure, and relevant parameters controlling
cohesive granulates instabilities induced by fluid shear. Also,
since regularly arranged monodisperse granulates lead to a
uniform distribution of the loads, their instability threshold
might provide a sufficient condition for the instability of
similarly loaded/sheared disordered packings where the load
is highly localized to fewer force chains bearing a higher
maximum load.

Real systems, on the other hand, exhibit a host of additional
features including grains polidispersity in size and shape,
additional forcing factors (e.g., gravity, friction, nonuniform
distribution of cohesive forces), and fluid anomalous rheology
(i.e., non-Newtonian behavior). These affect the force balance
at both a local and global level due to structural changes of
the force network and contact loads distribution. In random
packings, the latter is highly anisotropic and inhomogeneous
due to the presence of force chains that bear most of the
load. While such inhomogeneity might potentially induce
significant deviations from the behavior of cohesive granulates
with a regular arrangement of grains, it has been shown
that analysis/predictions based upon regular arrangements of
frictionless monodisperse spheres provide remarkably good
predictions concerning the stability properties of nonspherical
randomly packed frictional granulates [15]. This might be
attributed to the observed constant mechanical strength of
randomly packed wet granulates over a wide range of wetting
liquid contents [41]. Scheel et al. [41] theoretically derived the
cohesivity of randomly packed glass beads by approximating
them with uniform arrangements of frictionless spheres. Their
experiments on both monodisperse and polydisperse sand
grains led to a remarkably good match with their theoretical
predictions. It has been therefore speculated that roughness,
as well as randomness, might play only a secondary role
in determining the static and dynamic properties of random
polydisperse granulates [42]. Fully quantitative investigations
on random (polydisperse) granulates are therefore needed to
elucidate such mechanisms.

The study of contact loads distribution in random networks
related to the onset of instability poses significant additional
analytical challenges since it requires the evaluation of
loads spatial distribution. More importantly, the tails of such
distributions have to be evaluated since they are associated
to the maximum loads, which drive the global instability of
the system. While analytical probability density function (pdf)
methods might be employed to obtain the full pdf of the contact
loads, load redistribution to surviving chains after local rupture
could be addressed by, for example, random fiber bundle model
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[43]. A combination of such analytical and numerical methods
could represent an alternative to computationally intensive full
molecular dynamics simulations.

In addition, many fluids in natural, industrial, and biological
systems exhibit non-Newtonian behavior (e.g., oil, paints,
blood). Anomalous rheology of the flowing fluid dramatically
affects the macroscopic behavior of the system, its governing
equations, and the stress distribution inside the granulate due
to the nonlinear coupling between pore-space geometry and
the rheological properties of the fluid [44]. Nevertheless, it
has been showed that power-law fluids exhibit universality
behavior, and that their flow properties might belong to the
same universality class of Newtonian fluid flows [44]. This

suggests that the approach employed in our study could be
easily generalized to non-Newtonian fluids.

The application of pdf methods to randomly packed
cohesive granulates’ instability will be object of future inves-
tigations, together with the study of regular packing structures
other than cubic (e.g., arrangements derived from hexagonal
close packing), size and density polydispersity, and the effect
of fluid non-Newtonicity.
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