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CHAPTER 2

From upscaling techniques to hybrid models

I. Battiato & D.M. Tartakovsky

2.1 INTRODUCTION

Any mathematical model is an idealization of a real system at a specified scale. Assumptions
and/or simplifications upon which such models are based enable their formulation, analytical
and/or numerical treatment and, consequently, their use as predictive tools. The acceptance of a
model derives from an optimal balance between simplicity and accuracy in capturing a system’s
behavior on the one hand and computational costs on the other. Different models might offer
optimal performances, both in terms of fidelity and computation, in various regimes. A further
complication in model selection arises when a scale at which predictions are sought is much larger
than a scale at which governing equations and first principles are well defined. This situation is
particularly common in analysis of flow and transport in porous media: typical scales of interest
for predictions are often many orders of magnitude larger than a scale at which most biochemical
processes take place. Such complex systems are of particular interest because of their ubiquitous
nature: they characterize a variety of environments ranging from geologic formations to biological
cells, and from oil reservoirs to nanotechnology products.

Flow and transport in porous media can be modeled at the pore- (microscopic) or Darcy-
(macroscopic) scales. Equations that have a solid physical foundation and are based on the first
principles (e.g., Stokes’ equations for fluid flow and Fick’s law of diffusion for solute transport)
require the knowledge of pore geometry that is seldom available in real applications. While rapid
advancements in computational power and imagine techniques bode well for the widespread use
of pore-scale models at increasingly larger scales, computational domains that can be modeled
with modern-day pore-scale simulations are still too small to be of any use for predictions at the
field scale: the heterogeneity of most natural porous media (e.g., oil reservoirs and aquifers)
and technology products (carbon nanotubes assemblies) and prohibitive computational costs
render lattice-Boltzmann modeling (Leemput et al. 2007), smoothed particle hydrodynamics
(Tartakovsky et al. 2007), molecular dynamics (Walther et al. 2004) and other pore-scale simula-
tions impractical as a predictive tool at scales that are many orders of magnitude larger than the
pore scale.

Macroscopic models (e.g., Darcy’s law for fluid flow and an advection-dispersion equation
for transport), which treat a porous medium as an “averaged” continuum, overcome these limita-
tions by relying on phenomenological descriptions and a number of simplifications (e.g., spatial
smoothness of pore-scale quantities, spatial periodicity of pore structures, and low degree of
physical and chemical heterogeneity).

The ubiquitous presence of heterogeneities in natural systems might lead to a localized break-
down of such continuum models. Whenever a localized breakdown of continuum-scale models
occurs, hybrid models must be used to attain an increased rigor and accuracy in predictions, while
keeping computational costs in check. Hybrid simulations (Leemput et al. 2007, Tartakovsky et al.
2007) resolve a small reactive region with a pore-scale model that is coupled to its continuum
counterpart in the rest of a computational domain.

In Section 2.2 we present a classification of the most common upscaling methods
(Section 2.2.1), which allow one to derive macroscopic equations from their pore-scale coun-
terparts. Sections 2.2.2 and 2.2.3 contain classical results of homogenization theory and their
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implications for applicability of macroscopic models. In Section 2.3 we identify the applicabil-
ity range of macroscopic models for diffusive systems with nonlinear homogeneous reaction
(Section 2.3.1) and advective-diffusive systems with nonlinear heterogeneous reactions
(Section 2.3.4). In Section 2.4 we use volume averaging to construct the formalism of two
types of hybrid algorithms, intrusive (Section 2.4.1) and non-intrusive (Section 2.4.5). Our major
conclusions are presented in Section 2.5.

2.2 FROM FIRST PRINCIPLES TO EFFECTIVE EQUATIONS

2.2.1 Classification of upscaling methods

We consider a porous medium !=!s ∪!l consisting of a solid matrix !s and a fluid-filled pore
space !l. A major goal of upscaling is to establish connections between pore- and continuum-
scale descriptions of transport processes in !. Mathematical approaches to upscaling include
the method of volume averaging (Whitaker 1999) and its modifications (Kechagia et al. 2002),
generalizations of the method of moments (Shapiro & Brenner 1986, 1988, Shapiro et al. 1996),
homogenization via multiple-scale expansions (Adler 1992), pore-network models (Acharya et al.
2005), and thermodynamically constrained averaging (Gray & Miller 2005).

Let u be a real-valued function on a pore-scale domain!l that exhibits rapid spatial oscillations.
It describes a certain physical quantity and satisfies a partial differential equation:

L [u] = f (2.1)

One can define the local average of u as:

〈u〉(x) = 1
|V |

∫

V (x)
u(y) dy (2.2)

In the method of volume averaging, the support volume V “is a small, but not too small,
neighborhood of point x of the size of a representative elementary volume, REV (several hundred
or thousand of pores)” (Hornung 1997, p. 1). The ambiguity in defining the size of an REV is
typical. For example, in (de Marsily 1986, p. 15) “the size of the REV is defined by saying that it is

• sufficiently large to contain a great number of pores so as to allow us to define a mean global
property, while ensuring that the effects of the fluctuations from one pore to another are
negligible. One may take, for example, 1 cm3 or 1 dm3;

• sufficiently small so that the parameter variations from one domain to the next may be
approximated by continuous functions, in order that we may use infinitesimal calculus.”

A continuum-scale equation:
L [〈c〉] = g, (2.3)

is constructed by volumetric averaging of the original pore-scale equation (Eq. 2.1). The procedure
is facilitated by the spatial averaging theorem, which enables one to exchange spatial integration
and differentiation (Whitaker 1999):

〈∇u〉 = ∇〈u〉+ 1
|V |

∫

Als

un dA, (2.4)

where Als is the liquid-solid interface contained in V and n is the outward normal unit vector
of Als.

Similar concepts are used in thermodynamically constrained averaging theory (Gray & Miller
2005), wherein thermodynamics is introduced into a constrained entropy inequality to guide
the formation of closed macroscale models that retain consistency with microscale physics and
thermodynamics.
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In the homogenization theory by multiple-scale expansions (Hornung 1997), the volume V is
the unit cell of a periodic porous medium ! with period ε. A homogenized equation is obtained
by determining the following limit:

〈u〉 = 〈lim
ε→0

uε〉, (2.5)

where uε is the sequence (indexed by ε) of solutions of Eq. (2.1) with periodically oscillating
coefficients. The limit is determined by utilizing a two-scale asymptotic expansion that “is an
ansatz of the form:

uε(x) = u0(x, x/ε) + εu1(x, x/ε) + ε2u2(x, x/ε) + · · · (2.6)

where each function ui(x, y) in this series depends on two variables, x the macroscopic (or slow)
variable and y the microscopic (or fast) variable, and is V -periodic in y (V is the unit period).
Inserting Eq. (2.6) into Eq. (2.1) satisfied by uε and identifying powers of ε leads to a cascade of
equations for each term ui(x, y). In general averaging with respect to y yields the homogenized
equation for u0. Another step is required to rigorously justify the homogenization result obtained
heuristically with this two-scale asymptotic expansion” (Hornung 1997, p. 238).

Similar to the homogenization theory definition of average is that of the methods of moments,
wherein the global (x) and local (y) variables “characterize the instantaneous position (con-
figuration) of the Brownian particle in its phase space. Together the vectors (x, y) define a
multidimensional phase space x⊕ y within which convective and diffusive solute-particle trans-
port processes occur. The domain of permissible values of x will always be unbounded; in contrast,
the domain of permissible or accessible values of y will generally be bounded” (Brenner 1987,
pp. 66–67), i.e., y∈V . In this case, a macroscopic transport equation is obtained for the probability
density function of a Brownian particle (Brenner 1987, Equations 3.3–3.5):

P(x, t|y′) def=
∫

V

P(x, y, t|y′) dy (2.7)

where P(x, y, t|y′)≡P(x− x′, y, t− t′|y′) with x′= 0 and t′= 0 denotes the “conditional proba-
bility density that the Brownian particle is situated at position (x, y) at time t, given that it was
initially introduced into the system at the position (x′, y′) at some earlier time t′ (t > t′)” (Brenner
1987, p. 68). “For sufficiently long times (i.e. ‘long’ relative to the time scale of evolution of
the microscale transport process, but ‘short’ relative to the time scale of the macrotransport pro-
cess) we expect that the particle(s) will loose memory of the initial position(s) y′”. Consequently,
P(x, t|y′) ≈ P(x, t) and a fully macrotransport equation can be determined.

A number of other approaches to upscaling are reviewed by Brenner (1987). Even if based on
different definitions of the averaging volume and on distinct mathematical tools, all upscaling
methods require closure assumptions to decouple the average system behavior from the pore-scale
information: the latter is exclusively incorporated into the upscaled equation through effective
parameters that can be determined by laboratory experiments or numerical solution of a closure
problem at the unit cell level.

2.2.2 Flow: From Stokes to Darcy/Brinkman equations

Single-phase flow of an incompressible Newtonian fluid in porous media in the pore-space !l is
described by the Stokes and continuity equations subject to the no-slip boundary condition on Als:

µ∇2v − ∇p = 0, ∇ · v = 0, x ∈ !l, v = 0, x ∈ Als, (2.8)

where v(x) is the fluid velocity, p denotes the fluid dynamic pressure, and µ is the dynamic
viscosity.
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Upscaling of the Stokes equations (Eq. 2.8) at the pore-scale to the continuum scale has
been the subject of numerous investigations, including those relying on multiple-scale expan-
sions (Sanchez-Palencia & Zaoui 1989, Hornung 1997, Auriault & Adler 1995, Mikelić et al.
2006, Peter 2007, Marušić-Paloka & Piatnitski 2005, and references therein), volume averag-
ing (Neuman 1977, and references therein), the method of moments, etc. These studies have
demonstrated that Darcy’s law, which was empirically established by Darcy (1856), and the
continuity equation for 〈v〉:

〈v〉 = −K
µ

· ∇〈p〉, ∇ · 〈v〉 = 0, x ∈ !, (2.9)

provide an effective representation of the pore-scale Stokes flow (Hornung 1997, Eq. 4.7). Such
upscaling procedures also enable one to formally define the permeability tensor K in Eq. (2.9)
as the average of a “closure variable” k(y), i.e., K = 〈k(y)〉. The latter is the unique solution
of a local problem (e.g., Hornung 1997, pp. 46–47, Theorem 1.1 and Auriault & Adler 1995,
Eq. 22) defined on a representative (unit) cell of the porous medium. “It is well admitted that
the existence of continuum behaviors that are macroscopically equivalent to finely heterogeneous
media needs a good separation of scales. If l and L are the characteristic lengths at the local and
the macroscopic scale, respectively, their ratio should obey” (Auriault et al. 2005):

ε = l

L
, 1, (2.10)

To describe flow through “hyperporous” media, Brinkman (1949) introduced a modification
of Darcy’s law:

∇〈p〉 = −µ

K
〈v〉+ µe∇2〈v〉, (2.11)

where µe is an effective viscosity “which may differ from µ” (Brinkman 1949). The raison
d’etre for such a modification was the necessity of obtaining an equation that was valid in the
high permeability limit (|K|→∞) and that allowed for a direct coupling with the Stokes equa-
tions at interfaces separating Stokes flow (infinite permeability regions) and filtration flow (low
permeability regions). In Brinkman’s words, “this equation has the advantage of approximating
Eq. (2.9) for low values of K and Eq. (2.8) for high values of K”.

After its introduction and its widespread use, an increasing research effort was devoted to
the identification of domains of validity of both Darcy’s & Brinkman’s law (Lévy 1983, Auriault
2009, Durlofsky & Brady 2009, and references therein). Brinkman’s intuition was mathematically
proven later by Goyeau et al. (1997) and Auriault et al. (2005), who used respectively the method
of volume averaging and multiple-scale expansions to demonstrate that Brinkman’s equation
represents a higher-order approximation of Darcy’s law when the separation of scales is poor.

2.2.3 Transport: From advection-diffusion to advection-dispersion equation

Consider a fluid that contains a dissolved species M, whose dimensional concentration c(x, t)
[molL−3] at point x∈!l and time t > 0 changes due to advection, molecular diffusion, homo-
geneous reaction in the liquid phase and heterogeneous reaction at the solid-liquid interface Als.
The first three phenomena are described by an advection-diffusion-reaction equation:

∂c

∂t
+ v · ∇c = ∇ · (D∇c) + R(c), x ∈ !l, t > 0, (2.12)

where the molecular diffusion coefficient D is, in general, a positive-definite second-rank tensor.
If diffusion is isotropic, D = DI where D [L2T−1] is the diffusion coefficient and I is the identity
matrix. The source term R(c) represents a generic homogeneous reaction. At the solid-liquid
interface Als impermeable to flow, mass conservation requires that mass flux of the species M
be balanced by net mass flux due to heterogeneous reaction, Q(c):

−n · D∇c = Q(c), x ∈ Als, (2.13)
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In addition to Eq. (2.13), the flow and transport equations, Eq. (2.8) and Eq. (2.12), are supple-
mented with boundary conditions on the external boundary of the flow domain!. The upscaling of
Eq. (2.12) and Eq. (2.13) leads to effective equations for the average concentration 〈c〉, generally
written in the following form:

∂〈c〉
∂t

+ 〈v〉 · ∇〈c〉 = ∇ · (D∗∇〈c〉) + R(〈c〉) + Q(〈c〉), x ∈ !, t > 0, (2.14)

where D∗ is a dispersion tensor and R(〈c〉) and Q(〈c〉) are effective reactive sources.
A significant research effort and ingenuity has been devoted to the upscaling of various func-

tional forms of R(c) and Q(c) relevant to engineering, chemical, biochemical, hydrological, and
other applications (Shapiro & Brenner 1986, 1988, Ochoa-Tapia et al. 1991, Shapiro et al. 1996,
Wood & Ford 2007, Wood et al. 2007, van Noorden & Pop 2008, Hesse et al. 2009). Yet, very
little, and only recent, attention has been paid to the identification of the applicability conditions
of the upscaled models proposed by such a prolific research path.

While useful in a variety of applications, continuum models fail to capture experimentally
observed transport features, including a difference between fractal dimensions of the diffusion
and dispersion fronts (isoconcentration contours) (Maloy et al. 1998), long tails in breakthrough
curves (Neuman & Tartakovsky 2009), and the onset of instability in variable density flows
(Tartakovsky et al. 2008b). ADE-based models of transport of (bio-)chemically reactive solutes,
which are the focus of our analysis, can significantly over-predict the extent of reactions in mixing-
induced chemical transformations (Knutson et al. 2007, Wood et al. 2007, Tartakovsky et al. 2007,
Li et al. 2006, Tartakovsky et al. 2008a, and references therein). These and other shortcomings
stem from the inadequacy of either standard macroscopic models or their parametrizations or
both. Upscaling from the pore-scale, on which governing equations are physically based and well
defined, to the continuum scale, on which they are used for qualitative predictions, often enables
one to establish the connection between the two modeling scales.

Upscaling approaches that rely on characteristic dimensionless numbers (e.g., the Damköhler
and Péclet numbers) can provide quantitative measures for the validity of various upscaling
approximations. Auriault and Adler (1995) used multiple scale expansions to establish the appli-
cability range of advection-dispersion equation for a non-reactive solute in terms of Péclet number.
Mikelić et al. (2006) provided a rigorous upscaled version of the Taylor dispersion problem with
linear heterogeneous reaction. For flow between two parallel reacting plates they established the
applicability range of the upscaled equation in terms of the Damköhler and Péclet numbers.

Nonlinearity of governing equations complicates the upscaling of most reactive transport phe-
nomena. It requires a linearization and/or other approximations, whose accuracy and validity
cannot be ascertained a priori. This is especially so for a large class of transport processes,
such as mixing-induced precipitation, which exhibit highly localized reacting fronts and con-
sequently defy macroscopic descriptions that are completely decoupled from their microscopic
counterparts (Ochoa-Tapia et al. 1991, Auriault & Adler 1995, Kechagia et al. 2002).

In the following section, we present results from Battiato et al. (2009) and Battiato and
Tartakovsky (2010) that generalize the analyses of Auriault and Adler (1995) and Mikelić et al.
(2006) to nonlinear reactive processes. In Section 2.3.1 we consider a multicomponent system
undergoing nonlinear homogeneous and linear heterogeneous reaction described by a system of
coupled reaction-diffusion equations (RDEs); we specify key physical and (bio-)chemical assump-
tions that underpin this model and identify the Damköhler numbers for homogeneous and hetero-
geneous reactions as dimensionless parameters that control the phenomenon. We present the major
results of volume averaging (Whitaker 1999) pore-scale equations to derive a system of upscaled
RDEs that are commonly used to model mixing-induced precipitation on the continuum scale
(e.g., Steefel et al. 2005, and the references therein). The goal here is to identify sufficient condi-
tions for the macroscopic RDEs to be a valid descriptor of mixing-induced precipitation. To focus
on the relative effects of nonlinear geochemical reactions and diffusion, we neglect advection.

In Section 2.3.4 we consider the advective-diffusive transport of a solute that undergoes a
nonlinear heterogeneous reaction: after reaching a threshold concentration value, it precipitates
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on the solid matrix to form a crystalline solid. The relative importance of three key pore-
scale transport mechanisms (advection, molecular diffusion, and reactions) is quantified by
the Péclet (Pe) and Damköhler (Da) numbers. We use multiple-scale expansions to upscale
a pore-scale advection-diffusion equation with reactions entering through a boundary condi-
tion on the fluid-solid interface, and to establish sufficient conditions under which macroscopic
advection-dispersion-reaction equations (ADREs) provide an accurate description of the pore-
scale processes. These conditions are summarized by a phase diagram in the (Pe, Da) space,
parameterized with a scale-separation parameter that is defined as the ratio of characteristic
lengths associated with the pore- and macro-scales.

2.3 APPLICABILITY RANGE OF MACROSCOPIC MODELS
FOR REACTIVE SYSTEMS

2.3.1 Diffusion-reaction equations: mixing-induced precipitation processes

Consider a porous medium ! that is fully saturated with an incompressible liquid at rest. The
liquid, occupying the pore-space !l, is a solution of two chemical (or biological) species M1 and
M2 (with respective concentrations c1 and c2) that react to form an aqueous reaction product M3.
Whenever c3, the concentration of M3, exceeds a threshold value, M3 undergoes a heterogeneous
reaction and precipitates on the solid matrix, forming a precipitate M4(s). In general, this process
of mixing-induced precipitation is fully reversible, M1 + M2 ! M3 ! M4(s), and its speed is
controlled by the reaction rates k12 [L3mol−1T−1], kp [LT−1], k3 [T−1] and kd [molT−1L−2]
corresponding to the following reactions:

M1 + M2
k12−→ M3

kp−→ M4(s) and M1 + M2
k3←− M3

kd←− M4(s) (2.15)

For bimolecular and unimolecular elementary reactions at constant temperature, the change in
concentration is proportional to the product of the concentration of the reactants. Hence, the
consumption and production rates, Rc

i with i∈ {1, 2} and R
p
3 , of species Mi, i∈ {1, 2}, and M3,

respectively, associated with the homogeneous reaction in Eq. (2.15) are typically concentration-
driven and of the form Rc

i =−R
p
3 =− k12ĉ1ĉ2 + k3ĉ3. For the heterogeneous reaction, it is

common to assume (Knabner et al. 1995, Duijn & Pop 2004, and references therein) that i) precip-
itation rate rp is proportional to concentration ĉ3, i.e., rp = kpĉ3; ii) dissolution rate rd is constant,
rd = kd ; and iii) super-saturation index does not become large enough to support precipitation in
the liquid phase, i.e., precipitation of M3 occurs solely as an overgrowth on solid grains.

With these assumptions, the aqueous concentrations ĉi(r̂, t̂)
[
molL−3

]
at point r̂ and time t̂

satisfy a system of reaction-diffusion equations (RDEs):

∂ĉi

∂t̂
= Di∇̂2ĉi − k12ĉ1ĉ2 + k3ĉ3 for r̂ ∈ !l, t̂ > 0 i = 1, 2 (2.16a)

∂ĉ3

∂t̂
= D3∇̂2ĉ3 + k12ĉ1ĉ2 − k3ĉ3 for r̂ ∈ !l, t̂ > 0, (2.16b)

subject to the boundary conditions on the (multi-connected) liquid-solid interface Als:

n · ∇̂ ĉi = 0, i = 1, 2; −D3n · ∇̂ ĉ3 = kp(ĉ3 − ceq) (2.17)

and the initial conditions:

ĉi(x, 0) = ci0(x), i = 1, 2, 3, !l(0) = !l0, (2.18)

when concentration of M4(s) is strictly positive. Here the hatted quantities have appropriate units
(physical dimensions), ceq = kd/kp is the equilibrium concentration, Di [L2T−1] (i = 1, 2, 3)
are the diffusion coefficients of the aqueous species M1, M2, and M3, respectively. Due to
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precipitation and dissolution, the liquid-solid interface Als(t̂), with the outward normal unit
vector n(t̂), evolves in time t̂ with velocity v [LT−1], according to ρcv · n = kp(ĉ3 − ceq), where
ρc [molsL

−3] is the molar density of the precipitate. The dynamics of the interface Als(t̂), result
from a modeling assumption about the dependence of v on precipitation/dissolution rates and
mass conservation (van Noorden & Pop 2008).

To be specific, we consider a scenario in which two identical solvents (e.g., water), one con-
taining M1 with concentration ĉ10 and the other containing M2 with concentration ĉ20, are brought
in contact with each other at time t̂ = 0. Since reactants M1 and M2 are initially separated, no
reactions took place and the initial concentration of reaction product M3 is ĉ30 = 0. This is a typ-
ical situation, corresponding, for example, to injection of a solution of M1 into a porous medium
occupied by a solution of M2 (Tartakovsky et al. 2008a).

The characteristic time scales associated with the chemical reactions Eq. (2.15) are τ1 = τ2 =
1/k12c10 for concentrations ĉ1 and ĉ2, and τ3 = ceq/k12c

2
10 for concentration ĉ3. To simplify

the presentation, we assume that the diffusion coefficients for reactants M1 and M2 and product
M3(l) are the same, D1 = D2 = D3 = D . Let us introduce dimensionless quantities:

t = t̂

τ
, q = ceq

c10
, ci = ĉi

c10
, c3 = ĉ3

ceq
, K = k3ceq

k12c
2
10

, Da = l2k12c10

D
, (2.19)

where i = 1, 2; l denotes a characteristic length scale associated with pore structure; and the
Damköhler number Da is the ratio of diffusion and reaction time scales for species Mi (i = 1, 2, 3).
RDEs Eq. (2.16) can now be written in a dimensionless form as:

∂ci

∂t
= l2

Da
∇̂2ci − c1c2 + Kc3 (i = 1, 2), q

∂c3

∂t
= ql2

Da
∇̂2c3 + c1c2 −Kc3, (2.20)

Following Tartakovsky et al. (2007), we define the Damköhler number for the precipitation/
dissolution process as:

Dals = kpl

D
, (2.21)

This yields a dimensionless form of the boundary conditions on the liquid-solid interface Als:

n · ∇̂ci = 0 (i = 1, 2), n · l∇̂c3 = Dals(1− c3). (2.22)

We proceed by employing the local volume averaging (Whitaker 1999) to upscale the pore-
scale equations, Eq. (2.20) and Eq. (2.22) to the macroscopic scale. Section 2.3.2 contains
definitions of the averaging procedure. The results of the upscaling procedure are presented in
form of Propositions in Section 2.3.3 (Battiato et al. 2009). The results are summarized in a phase
diagram identifying sufficient conditions under which the upscaled (macroscopic) description
is valid.

2.3.2 Preliminaries

Consider a portion of the porous medium V ∈! whose volume is |V | and characteristic radius
r00 l, where l is the pore-geometry length scale. Let B(x̂)∈V denote the volume of the liquid
phase contained in V , which is centered at x̂∈!. If a characteristic length-scale of the macroscopic
domain ! is L, then the size of the averaging volume V is selected to satisfy l, r0,L.

Following Whitaker (1999), we define superficial and intrinsic averages of a quantity c(r̂) with
r̂ ∈ !l as:

〈c〉(x̂) = 1
|V |

∫

B(x̂)
c(r̂) d3r and 〈c〉B(x̂) = 1

|B(x̂)|

∫

B(x̂)
c(r̂) d3r, (2.23)

respectively. The two averages are related through porosity φ≡ |B|/|V | by 〈c〉=φ〈c〉B. The
application of spatial averaging is facilitated by the spatial averaging theorem Eq. (2.4).
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Let Lc, Lc1 and Lφ denote characteristic length-scales associated with the macroscopic
quantities 〈c〉B, ∇̂〈c〉B and φ, respectively. These scales are defined by (Whitaker 1999, p. 19):

∇̂fi(x) = O
(
'fi

Li

)
, 'fi(x) ≡ fi

(
x + Li

2

)
− fi

(
x− Li

2

)
(2.24)

for fi = {〈c〉B, ∇̂〈c〉B,φ} and Li = {Lc, Lc1, Lφ}, respectively. The notation f = O(g) denotes an
order of magnitude estimate in the following sense (Kundu & Cohen 2008, p. 391):

|g|√
10
≤ |f | ≤ |g|

√
10. (2.25)

2.3.3 Upscaling via volume averaging

In this section, we present results of Battiato et al. (2009) for the upscaling of the third equation
in Eq. (2.20). The remaining two equations in Eq. (2.20) are upscaled in a similar fashion. Details
of the derivation can be found in Battiato et al. (2009).

We assume that reactions in the fluid phase are much faster than precipitation on the solid
phase, so that 〈∂c3/∂t〉= ∂〈c3〉/∂t. No assumptions are required for the upscaling of the linear
term 〈Kc3〉B = K〈c3〉B. The averaging procedure is presented below as a series of propositions.
Their proofs are provided in Battiato et al. (2009).

Proposition 2.3.1. Suppose that the following scale constraints hold:

1) l, r0,

2) r2
0,L

2
where L = min{Lc1, Lφ},

3) ε, 1 where ε= l/Lc,
4) r0,Lc,
5) r2

0,LcLc1.

Then the average of the Laplacian in Eq. (2.20) can be approximated by:

〈∇̂2c3〉 = φ∇̂2〈c3〉B + ∇̂φ · ∇̂〈c3〉B + 1
|V | ∇̂ ·

∫

Als

c̃3nls dA− av Dals

〈c3〉B − 1
l

(2.26)

where av≡ |Als|/|V | and c̃3 is such that c3 = 〈c3〉B + c̃3.

Proposition 2.3.2. Suppose that the scale constraints 3)–5) of the Proposition 2.3.1 hold. Then
the average of the reaction term in Eq. (2.20) can be approximated by:

〈c1c2〉 = φ 〈c1〉B 〈c2〉B . (2.27)

Proposition 2.3.3. Suppose that in addition to the constraints in Proposition 2.3.1 the following
scale constraints hold:

1) av≈ l−1,
2) t0Da,
3) l,Lφ.

Then, the concentration fluctuations c̃3 satisfy a differential equation:

0 = ql2

Da
∇̂2c̃3 + qavl

φ

Dals

Da
(〈c3〉B − 1) + c̃1〈c2〉B + c̃2 〈c1〉B + c̃1c̃2 −Kc̃3 (2.28)

subject to the boundary conditions:

−n · ∇̂ c̃3 = n · ∇̂〈c3〉B + Dals

〈c3〉B + c̃3 − 1
l

. (2.29)
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Boundary-value problems for fluctuations c̃1 and c̃2 are derived in a similar manner. Further
progress requires an assumption of periodicity of the porous medium.

Proposition 2.3.4. Suppose that in addition to the scale constraints imposed by Propositions 2.3.1
and 2.3.3 the porous medium is periodic with a unit cell characterized by n(r̂ + l̂i) = n(r̂), where l̂i
with i = 1, 2, 3 represents the three lattice vectors describing a spatially periodic porous medium.
Then concentration fluctuations are periodic, c̃(r̂ + l̂i) = c̃(r̂), and 〈c3〉B and ∇̂〈c3〉B in Eqs. (2.28)
and (2.29) are evaluated at the centroid.

Proposition 2.3.5. Suppose that in addition to the constraint imposed by Proposition 2.3.3 the
following constraints hold:

1) Dals, ε.
2) Da, 1,

Then concentration fluctuations c̃3 can be represented in terms of the macroscopic variables as:

c̃3 = b̂ · ∇̂ 〈c3〉B + s 〈c3〉B + ψ, (2.30)

where the closure variables b̂, s and ψ are solutions of the boundary value problems (wherein
j = 1, 2, 3):

∇̂2b̂− k3

D
b̂ = 0, −n · ∇̂b̂ = n at Als, b̂(r̂ + l̂j) = b̂(r̂) (2.31)

∇̂2s− k3

D
s = −avDals

φl
, −n · ∇̂s = Dals

l
〈c3〉l at Als, s(r̂ + l̂j) = s(r̂); (2.32)

∇̂2ψ − k3

D
ψ = avDals

φl
, −n · ∇̂ψ = −Dals

l
at Als, ψ(r̂ + l̂j) = ψ(r̂). (2.33)

Combining the results from Propositions 2.3.1–2.3.5 with analogous results for 〈c1〉B and 〈c2〉B,
the volume averaging of Eq. (2.20) leads to a system of macroscopic equations:

φ
∂ 〈ci〉B
∂t

= ε2

Da
∇ · (φDeff · ∇ 〈ci〉B)− φ 〈c1〉B 〈c2〉B + φK 〈c3〉B (i = 1, 2), (2.34)

φq
∂ 〈c3〉B
∂t

= qε2

Da
∇ ·(φDeff · ∇ 〈c3〉B)−qavl

Dals

Da
[〈c3〉B − 1]+φ 〈c1〉B 〈c2〉B−φK 〈c3〉B , (2.35)

where the effective diffusivity tensor Deff is defined as:

Deff = I + 1
|B|

∫

Als

nb̂ dA. (2.36)

According to Proposition 2.3.5, a sufficient condition for the validity of the macroscopic
description Eqs. (2.34)–(2.35), requires that Da, 1, which implies that on the pore scale the
system is well-mixed with diffusion dominating reactions. Further insight is gained by relating
different macroscopic diffusion and/or reaction regimes to the Damköhler number Da expressed
in terms of the scale-separation parameter ε. (This is conceptually similar to the Auriault and
Adler (1995) analysis of macroscopic dispersion equations, which identifies distinct transport
regimes by expressing the Péclet number as powers of ε.) Interplay between the Damköhler
number and ε determines whether macroscopic RDEs, Eqs. (2.34) and (2.35), are diffusion or
reaction dominated. For Da < ε2, the macroscopic process is diffusion-driven and the nonlinear
effects introduced by reactions are negligible. The two mechanisms are of the same order of
magnitude in the region ε2 < Da < ε, and reactions dominate diffusion if ε< Da < 1. Mixing-
induced precipitation, which is characterized by Da0 1, falls into the category of physical
phenomena for which pore-scale or hybrid simulations are a priori necessary.
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2.3.4 Advection-diffusion-reaction equation

Consider reactive transport in a porous medium whose characteristic length is L. Let us assume
that the medium can be represented microscopically by a collection of spatially periodic “unit
cells” with a characteristic length l, such that a scale parameter ε ≡ l/L, 1. Spatially periodic
representations of micro-structures of porous media are routinely used to derive macroscopic
properties and effective models of phenomena taking place in disordered media that lack such
periodicity (Nitsche & Brenner 1989, Section 2). The unit cell V̂ = B̂ ∪ Ĝ consists of the pore
space B̂ and the impermeable solid matrix Ĝ that are separated by the smooth surface Âls. The
pore spaces B̂ of each cell V̂ form a multi-connected pore-space domain B̂ε ⊂ !̂ bounded by the
smooth surface Âε

ls.

2.3.4.1 Governing equations
Single-phase flow of an incompressible fluid in the pore-space B̂ε is described by the Stokes and
continuity equations Eq. (2.8) subject to the no-slip boundary condition on Âε

ls. The fluid contains
a dissolved species M, whose molar concentration ĉε(x̂, t̂) [molL−3] at point x̂∈ B̂ε and time
t̂ > 0 changes due to advection, molecular diffusion, and a nonlinear heterogeneous reaction at
the solid-liquid interface Âε

ls. The first two phenomena are described by the advection-diffusion
equation Eq. (2.12).

Whenever the concentration ĉε exceeds a threshold value c, a heterogeneous reaction
nM↔N(s) occurs, in which n molecules of the solute M precipitate in the form of one molecule
of a crystalline solid N(s). At the solid-liquid interface Âε

ls impermeable to flow, mass conservation
requires that mass flux of the species M be balanced by the difference between the precipitation
rate Rp and the dissolution rate Rd :

−n · D̂∇̂ ĉε = Rp − Rd , (2.37)

where n is the outward unit normal vector of Âε
ls. Following Knabner et al. (1995), we assume that

Rp = k̂ĉa
ε and Rd = k̂ca, where k̂ [L3a−2T−1mol1−a] is the reaction rate constant, a ∈ Z+ is related

to the order of reaction n (Morse & Arvidson 2002, Eq. 6), and the threshold concentration c
represents the solubility product (Morse & Arvidson 2002). Mass conservation on the liquid-solid
interface Âε

ls yields a boundary condition (Morse & Arvidson 2002, Eq. 5):

−n · D̂∇̂ ĉε = k̂(ĉa
ε − ca), x̂ ∈ Âε

ls, t̂ > 0. (2.38)

In addition to Eq. (2.38), the flow and transport equations Eq. (2.8) and Eq. (2.12) are
supplemented with proper boundary conditions on the external boundary of the flow domain !̂.

2.3.4.2 Dimensionless formulation
Let us introduce dimensionless quantities:

cε = ĉε/c, x = x̂/L, vε = v̂ε/U, D = D̂/D, p = p̂l2/µ̂UL, (2.39)

where D and U are characteristic values of D and vε, respectively. The scaling of pressure p̂
ensures that the pressure gradient and the viscous term are of the same order of magnitude, as
prescribed by Stokes equation (Auriault & Adler 1995, Eqs. 15 and 16). Furthermore, we define
three time scales associated with diffusion (t̂D), reactions (t̂R) and advection (t̂A) as:

t̂D = L2

D
, t̂R = L

k̂ca−1
, t̂A = L

U
. (2.40)

Ratios between these time scales define the dimensionless Damköhler (Da = t̂D/t̂R) and Péclet
(Pe = t̂D/t̂A) numbers:

Da = Lk̂ca−1

D
and Pe = UL

D
. (2.41)
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Rewriting Eqs. (2.8), (2.12) and (2.38) in terms of the dimensionless quantities Eq. (2.39) and
the dimensionless time t = t̂/t̂D yields a dimensionless form of the flow equations:

ε2∇2vε − ∇p = 0, ∇ · vε = 0, x ∈ Bε, (2.42)

subject to:
vε = 0, x ∈ Aε

ls (2.43)

and a dimensionless form of the transport equation:

∂cε

∂t
+ ∇ · (−D∇cε + Pevεcε) = 0, x ∈ Bε, t > 0, (2.44)

subject to:
−n · D∇cε = Da(ca

ε − 1), x ∈ Aε
ls, t > 0. (2.45)

2.3.4.3 Homogenization via multiple-scale expansions
Homogenization aims to derive effective equations for average state variables that are represen-
tative of an averaging volume (e.g., Darcy scale). To this end, two types of local averages of a
quantity c(x) can be defined as in Eq. (2.23). We also define:

〈A〉ls ≡
1

|Als|

∫

Als(x)

A dy. (2.46)

In the subsequent derivation of effective (continuum- or Darcy-scale) equations for average
flow velocity 〈v(x)〉 and solute concentration 〈c(x, t)〉, we employ the method of multiple-scale
expansions (Auriault & Adler 1995, Hornung 1997).

The method of multiple-scale expansions introduces a fast space variable y and two time
variables τr and τa:

y = x
ε

, τr = Da t = t̂

t̂R
, τa = Pe t = t̂

t̂A
. (2.47)

Furthermore, it represents the concentration cε(x, t) in Eq. (2.44) as cε(x, t) := c(x, y, t, τr, τa).
The latter is expanded into an asymptotic series in powers of ε:

c(x, y, t, τr, τa) =
∞∑

m=0

εmcm(x, y, t, τr, τa), (2.48)

wherein cm(x, y, t, τr, τa) (m = 0, 1, . . .) are V -periodic in y. Finally, we set:

Pe = ε−α and Da = εβ, (2.49)

with the exponents α and β determining the system behavior. For example, transport due to
advection and dispersion at the pore scale is not homogenizable if α≥ 2 (Auriault & Adler 1995,
Section 3.5, Table 1).

Pore-scale reactive transport processes described by Eqs. (2.44)–(2.45) can be homogenized,
i.e., approximated up to order ε2 with an effective ADRE:

φ
∂〈c〉B
∂t

= ∇ · (D∗∇〈c〉B − Pe〈c〉B〈v〉)− ε−1φDaK ∗(〈c〉aB − 1), x ∈ !, (2.50)

provided the following conditions are met:

1) ε, 1,
2) Pe < ε−2,
3) Da/Pe < ε,
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4) Da < 1,
5) 〈χ〉ls≈〈χ〉B.

In Eq. (2.50), the dimensionless effective reaction rate constant K ∗ is determined by the pore
geometry:

K ∗ = |Als|
|B| , (2.51)

and the dispersion tensor D∗ is given by:

D∗ = 〈D(I + ∇yχ)〉+ εPe〈χk〉∇xp0. (2.52)

The closure variable χ(y) has zero mean, 〈χ〉= 0, and is defined as a solution of the local problem:

−∇y · D(∇yχ + I) + εPe v0∇yχ = εPe (〈v0〉B − v0), y ∈ B; (2.53a)

−n · D(∇yχ + I) = 0, y ∈ Als; (2.53b)

where v0 =−k · ∇xp0 and the pressure p0 is a solution of:

〈v〉 = −K · ∇p0, ∇ · 〈v〉 = 0, x ∈ !. (2.54)

Details of the derivations can be found in Battiato and Tartakovsky (2010). Constraints 1)–4)
ensure the separation of scales. While constraint 1) is almost always met in practical applications,
the rest of them depend on the relative importance of advective, diffusive, and reactive mechanisms
of transport. These conditions are summarized in the phase diagram in Fig. 2.1, where the line
β= 0 refers to Da = 1 and the half-space β> 0 to Da < 1 because ε< 1; the line α= 2 refers to
Pe = ε−2 and the half-space α< 2 refers to Pe < ε−2; the line α+β= 1 refers to Da/Pe = ε; and
the half-space underneath this line refers to Da/Pe < ε. Constraints 3) and 4) require that either
diffusion or advection-diffusion dominate reactions at the pore scale. This allows one to decouple
the pore- and continuum-scale descriptions. Constraint 5) is not required for scale separation,
but facilitates the derivation of the effective parameters Eq. (2.51) and Eq. (2.52). This constraint
allows one to interchange the surface and volume averages, 〈c1〉ls≈〈c1〉B, within errors on the
order of ε2.

The results above generalize the conclusions of the analysis of reactive-diffusive transport per-
formed in Section 2.3.1, which relied on the method of volume averaging. While using different
upscaling approaches, both analyses provide the same bound on the Damköhler number Da in
the absence of advection. The effective reaction rate K ∗ for heterogeneous reactions Eq. (2.51)
is likewise consistent with that obtained by Battiato et al. (2009). This suggests that the con-
ditions for validity and breakdown of continuum models of reactive transport presented in the
phase diagram in Fig. 2.1 are universal and independent of the upscaling method. Finally, these
upscaling results justify the use of reaction terms similar to the one in Eq. (2.50) in continuum
models of precipitation and dissolution processes in porous media (Lichtner & Tartakovsky 2003,
Tartakovsky et al. 2009, Broyda et al. 2010).

2.4 HYBRID MODELS FOR TRANSPORT IN POROUS MEDIA

2.4.1 Intrusive hybrid algorithm

Having identified the criteria of the applicability of macroscopic equations, we present a hybrid
algorithm that couples pore-scale simulations in a small domain !p with continuum simulations
elsewhere in the computational domain, !/!p. The coupling is accomplished via an iterative
procedure in a handshake region !pc, where both pore-scale and continuum-scale descriptions
are solved iteratively to ensure the continuity of state variables and their fluxes across the interface
between !p and the rest of the computational domain.
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Figure 2.1 Phase diagram indicating the range of applicability of macroscopic equations for the advection-
reaction-diffusion system Eqs. (2.44)–(2.45), in terms of Pe and Da. The grey region identifies the sufficient
conditions under which the macroscopic equations hold. In the white region, macro- and micro-scale problems
are coupled and have to be solved simultaneously. Also identified are different transport regimes depending
on the order of magnitude of Pe and Da. Diffusion, advection, and reaction are of the same order of magnitude
at the point (α,β) = (1, 0). After Battiato and Tartakovsky (2010).

This section contains a general formulation of flow and transport equations at the pore- and
continuum-scales (Section 4.1.1), as well as an outline of the proposed hybrid algorithm (Sec-
tion 2.4.1.2). Both the hybrid formulation and its numerical implementation are demonstrated in
Section 2.4.2 by applying them to model Taylor dispersion in a planar fracture with chemically
reactive walls. In Section 2.4.4, we use this well-studied problem to validate our hybrid algorithm
via comparison with analytical solutions and two-dimensional pore-scale numerical simulations.

2.4.1.1 Governing equations at the pore- and continuum-scale
Consider reactive transport in a fully-saturated porous medium !T . Within the pore space !l

contained in !T , single-phase flow of an incompressible fluid is described by the Stokes and con-
tinuity equations Eq. (2.8), subject to the no-slip boundary condition on the solid-liquid interface.
The flow is driven by boundary conditions imposed on ∂!T , the external boundary of !T .
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The fluid contains a dissolved species with molar concentration c(x, t) [ML−3] that undergoes
advection, molecular diffusion and a linear heterogeneous reaction at the solid-liquid interface
Asl. The evolution of c(x, t) is described by an advection-diffusion equation Eq. (2.12) with
D = DI and R(c) = 0, subject to the boundary condition Eq. (2.13) on the solid-fluid interface with
Q(c) = K c. Proper boundary conditions are applied on the external boundary ∂!T . This leads to:

∂c

∂t
+ ∇ · (vc) = D∇2c, (2.55a)

subject to:
−n · D∇c = K c. (2.55b)

where D [L2T−1] is the molecular diffusion coefficient, K [LT−1] is the reaction constant
describing an interface reaction (e.g., linear microbial degradation), and n is the outward unit
normal vector of Asl.

Let A(x, t) denote the volumetric average of a pore-scale quantity A(x, t) defined as:

A(x, t) ≡ 1
φ|V |

∫

V (x)

A(y, t) dy, (2.56)

where φ is the porosity of a porous medium and the averaging volume V might or might not
constitute a representative elementary volume (REV).

The upscaling of Eq. (2.55) by standard upscaling methodologies e.g., multiple-scale expan-
sions or volumetric averaging (e.g., Battiato &Tartakovsky 2010, and references therein), leads to:

φ
∂c

∂t
+ φ∇ · (Vc) = ∇ · (D∗∇c)−Kc, (2.57)

where D∗ is the dispersion tensor, V =φv is Darcy’s flux (Auriault & Adler 1995) and K is
the effective reaction rate. As previously discussed, a number of simplifying approximations are
required for Eq. (2.57) to be valid regardless of the choice of an upscaling technique.

2.4.1.2 General hybrid formulation
When Darcy’s law is valid over the whole computational domain !T but one or more of the
sufficient conditions (Battiato and Tartakovsky 2010, Battiato et al. 2009) for the validity of the
continuum-scale transport equation Eq. (2.57) break down in a sub-domain !p of the computa-
tional domain ! (Fig. 2.2), the averaging in !p of Eq. (2.55) results in an integro-differential
equation:

φ
dc

dt
+ ∇ · (vc) = D∇2c. (2.58)

Here the averaging of Eq. (2.56) is defined over V ≡!p(x,) and x, is the centroid of !p, i.e.,
the subdomain !p shrinks to a point x, ∈!T .

Application of Gauss’ theorem, boundary condition Eq. (2.55b) and the no-slip condition yield:

φ
∂c

∂t
= − 1

φ|!p|

∫

A
p
ll

qn ds− 1
φ|!p|

∫

A
p
sl

K c ds, (2.59)

where Ap = A
p
ll ∪A

p
sl is the bounding surface of !p and consists of liquid-liquid (Ap

ll) and solid-
liquid (Ap

sl) segments, ds is an infinitesimal element of Ap and qn = n · (vc − D∇c) is the flux
through the liquid-liquid portion of the boundary, Ap. The right hand side of Eq. (2.59) depends on
pore-scale quantities. It represents the fluxes exchanged at the boundary Ap between the pore- and
continuum-scale descriptions. While multiscale approaches (Christie 1996, Efendief & Durlofsky
2003, Langlo & Espedal 1994, among others) aim to decouple the two descriptions by employing
closure assumptions for the the unresolved flux, qn, our goal is to preserve the nonlinearity of the
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Figure 2.2 A schematic representation of the pore- and continuum-scale domains. After Battiato et al.
(2010).

problem and to compute the unresolved normal flux qn without any assumption on the microscale
behavior.

This will allow us to bypass the assumptions needed for continuum-scale models. To this end, we
obtain the pore-scale concentration c(x, t) in Eq. (2.59) by solving the transport problem Eq. (2.55)
defined on !p. The boundary condition Eq. (2.55b) is now defined on the union of all solid-liquid
surfaces Asl contained in !p. On the fluid-fluid segments A

p
ll , mass conservation requires that

n · (D∇c − vc) = qn. The flux qn, which represents a boundary condition for the pore-scale
problem Eq. (2.55) and a source term for the continuum-scale equation Eq. (2.59), is unknown.

In summary, the hybrid pore-scale/continuum scale algorithm contains the three unknowns
(c, c, qn) that satisfy a system of coupled partial-differential equations (Battiato et al. 2010):

φ
∂c

∂t
+ φ∇ · (Vc) = ∇ · (D∇c)−Kc, x ∈ !T , t > 0 (2.60)

φ
dc

dt
= 1

φ|!p|

∫

All

qn dx− 1
φ|!p|

∫

Asl

K c dx, x = x,, t > 0 (2.61)

∂c

∂t
+ ∇ · (vc) = D∇2c, x ∈ !p, t > 0 (2.62)

n · (D∇c − vc) = qn, x ∈ All, t > 0 (2.63)

−n · D∇c = K c, x ∈ Asl, t > 0, (2.64)

supplemented by boundary conditions on the external domain ∂!T and initial conditions.

2.4.2 Taylor dispersion in a fracture with reactive walls

Transport of a reactive solute by advection and diffusion in a fracture of width 2H that undergoes
a first-order heterogeneous reaction at the walls of the channel is described by:

∂c

∂t
+ u(y)

∂c

∂x
− D

(
∂2c

∂x2
+ ∂2c

∂y2

)
= 0, (x, y) ∈ !, t > 0 (2.65a)

−D
∂c

∂y
= K c, (x, y) ∈ A, t > 0, (2.65b)

where the flow domain!= {(x, y) : x∈ (0,∞), |y| < H} has the boundary A = {(x, y) : x∈ (0,∞),
|y| = H}. A fully developed flow assumption in laminar regime yields to a Poiseuille’s velocity
profile for the pore-scale velocity v = (u, 0)T , u(y) = um[1− (y/H)2 ], where um is the maximum
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velocity at the center of the fracture (y = 0). The average concentration c(x, t) in Eq. (2.56) is now
defined as:

c(x, t) ≡ 1
2H

H∫

−H

c(x, y, t) dy. (2.66)

It satisfies the Darcy-scale equation (Mikelić et al. 2006):

∂c

∂t
+ U

∂c

∂x
+ Kc = D

∂2c

∂x2
, x ∈ (0,∞), t > 0, (2.67a)

where

U = um

(
2
3

+ 4Day

45

)
, K = K

H

(
1− Day

3

)
, D = D

(

1 +
8Pe2

y

945

)

(2.67b)

and

Pey = umH

D
, Day = K H

D
. (2.67c)

The validity of Eq. (2.67) requires that L, a macroscopic characteristic length scale in the x
direction, be much larger than H , i.e., ε= H/L, 1; and places a number of constraints on the
order of magnitude of Pe and Da (see the phase diagram in Battiato and Tartakovsky (2010)).
Specifically, Eq. (2.67) fails for Day ≥ 3 as K changes sign for increasing positive values of K
(i.e., increasing mass loss at the solid-liquid interface): this leads to the unphysical behavior of
K < 0 (i.e., source) while mass is absorbed (degraded, etc) at the micro-scale (i.e., sink).

Whenever one or more of these constraints are violated in a small portion of the computational
domain,!p, Eq. (2.67) is no longer valid and its nonlocal counterpart Eq. (2.59) must be employed.
For the problem under consideration, the latter takes the form:

∂c

∂t
= D

∂2c

∂x2
− K Jc

2H
− u(y)

∂c

∂x
, (x, y) ∈ !, (2.68)

where !p = {(x, y) : x∈ (a, b), |y| < H} corresponds to a single macroscale grid block,
Jc = c(x, H) + c(x, −H), and the pore-scale concentration c(x, y, t) satisfies Eq. (2.65). Equa-
tion (2.68) is subject to boundary conditions at the internal boundary Ap = {(x, y) : x = a, b;
y∈ (−H , H)}:

n · (vc − D∇c) = qn. (2.69)

2.4.3 Hybrid algorithm

Solving the nonlinear coupled system Eqs. (2.65)–(2.69) reduces to finding zero qn of an algebraic
equation in the form F (qn) = 0, where qn is the unknown flux at the boundary of !p. The hybrid
pore-scale/continuum-scale algorithm can be formulated as follows.

• Initialization. At timestep T N , cN and c(t = T N ) are known.
• Guess for fluxes. Make a guess for qn. This imposes the Robin conditions Eq. (2.69) on Ap.
• Pore-scale evolution. The pore-scale problem Eq. (2.65) is evolved from T N to T N+1. The

source term.
• Evaluation of volume and boundary integrals. Jc and the volume integral in the right hand side

of Eq. (2.68) are evaluated.
• Continuum-scale evolution. The continuum-scale concentration c is evolved from T N to T N+1

by solving Eq. (2.68) in !p and Eq. (2.67) in the remainder of the computational domain.
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• Continuum-scale fluxes computation. Continuum-scale flux q̃n at the interface Ap is evaluated
by differentiation of continuum-scale solution.

• Convergence check and iteration. Select an acceptable tolerance ε. If |q̃n− qn| > ε, refine the
guess of qn and go to the second step. If |q̃n− qn| ≤ ε, then the convergence is reached. March
forward in time (N := N + 1) and go to the first step.

2.4.4 Numerical results

A finite volume implementation of the problem of reactive transport through a fracture is discussed
in Battiato et al. (2010). Spatial discretization of Eqs. (2.67) and (2.68) leads to an algebraic system
of equations of the form Ax = b with some of the coefficients ai,j = [A]i,j and bi dependent on
pore-scale quantities. While such formulation naturally arises from upscaling techniques, its
intrusive nature renders it less computationally appealing: at each macroscopic timestep, A must
be evaluated and inverted.

Some of the results discussed in Battiato et al. (2010) are reported here for completeness. These
include a hybrid validation for advective-diffusive transport in a fracture with uniform reaction
rates. This setting admits an analytical solution and, hence, is used to analyze the accuracy of
the hybrid algorithm relative to that of its continuum (upscaled) counterpart (Section 2.4.4.1). In
Section 2.4.4.2, the reaction coefficient is taken to be highly heterogeneous. For this situation, a
comparison of the hybrid solution with both a solution of the upscaled equation Eq. (2.67) and an
averaged solution of the fully two-dimensional problem (“pore-scale simulations”) is presented.

2.4.4.1 Hybrid validation
The macroscopic problem Eq. (2.67), subject to the initial and boundary conditions:

c(x, 0) = 1, c(0, t) = 0,
∂c

∂x
(∞, t) = 0, (2.70)

admits the unique solution

c(x, t) = e−Kt

(

1− 1√
π

eUx/D

∫ +∞

x+Ut

2
√

Dt

e−η
2
dη + 1√

π

∫ +∞

x−Ut

2
√

Dt

e−η
2
dη

)

. (2.71)

Battiato et al. (2010) use this exact solution to verify the accuracy of both the hybrid solution
and the numerical solution of the continuum problem Eq. (2.67) for advective-diffusive transport
(Fig. 2.3) and advective-diffusive-reactive transport with uniform reaction rates (Fig. 2.4). The
agreement between analytical and hybrid solution is perfect, which is to be expected since all the
necessary conditions for the validity of the macroscopic (averaged) transport equation Eq. (2.67)
hold for these flow and transport regimes. The parameter values used in these and subsequent
simulations are provided in Battiato et al. (2010).

2.4.4.2 Hybrid simulations for highly localized heterogeneous reaction
Effects heterogenous reaction coefficient are presented. We allow K to change by two orders
of magnitude with a typical Damköhler number ranging from 0.03 to 2.8. Specifically K = Kin
for x = 3.75 and K = Kout everywhere else, with Kin = 450 and Kout = 5. We show here that
significant deviations from the “pore-scale” solution occur even for Da < 3. The results of our
hybrid simulations are compared with that of the upscaled 1D equation and the average of the
fully 2D solution. Figure 2.5 shows the continuum-scale concentration obtained from the upscaled
1D continuum-scale, hybrid simulations and the 2D pore-scale equations. At the location of high
heterogeneity, the continuum-scale equation overestimates the concentration, with values that
double the true concentration obtained from the pore-scale simulations. On the contrary, the
hybrid simulation significantly improves the predictions.
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Figure 2.3 Advection-diffusion: Temporal snapshots of the average concentration c obtained analytically
by Eq. (2.71) (solid line) and from hybrid simulation (×) at times t = 0.005, t = 0.05, t = 0.15, t = 0.25, and
t = 0.395 (from left to right). The box indicates the location where pore- and continuum-scales are coupled.
After Battiato et al. (2010).

Figure 2.4 Advection-diffusion-reaction with homogeneous reaction rate: Temporal snapshots of the aver-
age concentration c obtained analytically by Eq. (2.71) (solid line) and from hybrid simulation (×) at times
t = 0.001, t = 0.005, t = 0.015, t = 0.025, t = 0.05, t = 0.1, and t = 0.195 (from top to bottom). The box
indicates the location where pore- and continuum-scales are coupled. After Battiato et al. (2010).

2.4.5 Non-intrusive hybrid algorithm

Th hybrid algorithm developed in the previous section is intrusive in that it requires the mod-
ification of some of the coefficients of the system of discretized equations. Even though its
formulation is quite general and can be applied to a variety of different numerical schemes, its
implementation in legacy codes, in which discretized equations cannot be easily modified by the
user, is challenging. Complex pore geometries introduce another complication.

Hence, a desirable feature of a hybrid algorithm is its portability and implementation in existing
codes. This can be accomplished by eliminating the overlapping (“handshake”) region and for-
mulating appropriate conditions at the interfaces separating the two computational subdomains,
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Figure 2.5 Advection-diffusion-reaction with localized reaction rate: Temporal snapshots of the average
concentration c obtained from the 1D upscaled equation (solid line), from hybrid simulations (−×−) and
from the 2D pore-scale simulations (dashed line) at times t = 0.0005 (top), t = 0.015 (center) and t = 0.06
(bottom). The box indicates the location where pore- and continuum-scales are coupled. After Battiato et al.
(2010).

while ensuring the continuity of state variables and fluxes. Within this framework, pore-scale
simulations affect a continuum-scale solution through boundary conditions (and not as a modi-
fication of continuum-scale discretized equations): this will facilitate hybrid implementation for
existing codes and/or software.

2.4.5.1 Governing equations at the pore- and continuum-scale for advective-diffusive systems
Consider advective-diffusive transport in a fully saturated porous medium !T . Within the pore
space !T

pore⊂!T , single-phase flow of an incompressible fluid is described by the Stokes and
continuity equations Eq. (2.8). Flow equations are subject to the no-slip boundary condition on
the solid-liquid interface AT

s/, which is taken to be impermeable to flow. The flow is driven by
boundary conditions imposed on ∂!T , the external boundary of!T . The fluid contains a dissolved
species with molar concentration c(x, t) that is advected and diffused in the system.

The evolution of the concentration c(x, t) of a tracer undergoing advection and diffusion is
described by:

∂c

∂t
+ ∇ · (vc) = D∇2c, (2.72)

subject to a no-flux boundary condition on the solid-fluid interface AT
s/

−n · D∇c = 0, (2.73)

and proper boundary conditions on ∂!T .
Let A(x, t) denote the spatial average of a pore-scale quantity A(x, t) defined as in Eq. (2.56).

Then, the spatial averaging of Eq. (2.72) leads to an upscaled equation:

φ
∂c

∂t
+ φ∇ · (Vc) = ∇ · (D∗∇c), (2.74)

where V is the average macroscopic velocity and D∗ is the dispersion coefficient.

2.4.5.2 Derivation of coupling boundary conditions
We are concerned with transport regimes in which the validity of the continuum-scale trans-
port equation Eq. (2.74) breaks down in a subdomain !p⊂!T

pore with boundary ∂!p of the
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Figure 2.6 A schematic representation of the pore- and continuum-scale domains. The subdomain where
continuum-scale representation breaks down is depicted in red. Its boundary is ∂!p. The boundary 0 is
constructed as the locus of the centers of the family of averaging volumes V (x) whose envelope is ∂!p.

computational domain !. We define 0 to be the locus of the centers of the family of the averaging
volumes V (x), whose envelope is ∂!p as shown in Fig. 2.6. We denote !p the domain bounded
by 0. Let As/ =!p ∩ AT

s/.
Let c← denote the limiting value of c(x) as x→ x← ∈0 from the exterior of !p, and

c→= c(x→) as x→ x→ ∈0 from the interior of !p. Since average concentration is a continuous
function everywhere in !, it is continuous across 0:

c← = c→ for |x→ − x←|→ 0. (2.75)

Let V in(x) := V (x) ∩ !p and V out(x) := V (x) \ V in(x) to form a partition of V where pore-
scale is explicitly resolved and where only a continuum-scale representation exists, respectively
(see Fig. 2.7). Then Eq. (2.75) can be written as:

c← = 1
φ|V |

∫

V in (x→)
c(y) dy + 1

φ|V |

∫

V out (x→)
c(y) dy. (2.76)

Expanding c(y) into a Taylor series around the centroid x, retaining the leading term, and
substituting the result into Eq. (2.76) yields:

c← = 1
φ|V |

∫

V in (x→)
c(y) dy + |V out(x→)|

φ|V | c→ (2.77)

In a similar manner, one can show that a flux continuity condition across 0 can be written as:

n · (D∗∇c← − φVc←) = 1
|V |n ·

∫

V in (x→)
(−D∇c + vc) dy + qn, (2.78)

where

qn(x) := 1
|V |n ·

∫

V out (x)
(−D∇c + vc) dy (2.79)
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Figure 2.7 A schematic representation of the averaging procedure across the boundary separating pore-
and continuum-scale representations. On the left of 0 pore-scale is fully resolved while on the right only a
continuum-scale representation exists.

is an unknown flux through 0. This flux serves as a coupling condition at the interface between
pore- and continuum-scale subdomains.

The final form of the nonlinear coupled system of equations for the hybrid algorithm is:

φ
∂c

∂t
+ φ∇ · (Vc) = ∇ · (D∗∇c), x ∈ ! \ !p, (2.80)

∂c

∂t
+ ∇ · (vc) = D∇2c, x ∈ !p, (2.81)

−n · D∇c = 0, x ∈ As/, (2.82)

n · (−D∇c + vc) = qn, x ∈ 0 (2.83)

c← = 1
φ|V |

∫

V in (x)

c dy + |V out|
φ|V | c→, x ∈ 0, (2.84)

n · (D∗∇c← − φVc←) = qn + 1
|V |n ·

∫

V in (x→)

(−D∇c + vc) dy, x ∈ 0. (2.85)

The interfacial conditions Eqs. (2.84) and (2.85) are reminiscent of the macroscopic Dirichlet
and Neumann boundary conditions derived by the method of volume averaging in Prat (1989).
While similar in spirit, our conditions do not require a closure approximation, relying on pore-scale
simulations instead.

Coupling conditions for the Taylor dispersion problem are derived as a special case of our more
general formulation in the following section.

2.4.5.3 Taylor dispersion between parallel plates (V ∩!p =∅)
Whenever the average of a pore-scale variable ξ(x) with x = (x1, x2, x3) ∈ !1×!2×!3 is defined
by integrating one of the independent variables xi over !i, i = 1, 2, 3, the dimensionality of the
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correspondent continuum-scale equation is reduced. An example is the problem of Taylor disper-
sion between two infinite parallel plates separated by the distance 2H . Now !1 = (−∞, +∞),
!2 = (−H , H), and the average of a generic pore-scale variable is defined as:

ξ(x) = 1
2H

∫ H

−H

ξ(x, y) dy. (2.86)

This allows one to derive a one-dimensional effective equation starting from a two-dimensional
pore-scale problem. In such situation, V = V out and V in =∅. The boundary 0 reduces to a
point and to a vertical segment of length 2H on the continuum- and pore-scale subdomains,
respectively. Since φ= 1, the general coupling conditions for state variables and fluxes at the
boundary 0 established by Eqs. (2.84) and (2.85) simplify to:

c← = c→, x ∈ 0, (2.87)

n · (D∗∇c← − φVc←) = qn, x ∈ 0. (2.88)

These conditions establish that pore-scale concentration and flux are constant along the boundary
and equal to the continuum-scale value on the boundary exterior.

2.4.5.4 Hybrid algorithm
Solving the nonlinear coupled system Eqs. (2.80)–(2.85) reduces to finding zeros of a system of
equations in the form:

F (qn, c→) = 0, G(qn, c→) = 0, (2.89)

where

F (qn, c→) = n · (D∗∇c← − φVc←)− 1
|V |

∫

V in (x→)

n · (−D∇c + vc) dy − |0(x→)|
|V | qn, (2.90)

G(qn, c→) = c← − 1
φ|V |

∫

V in (x)

c dy − |V out|
φ|V | c→. (2.91)

The hybrid pore-scale/continuum-scale algorithm can be formulated as follows

• Initialization. At timestep T N , c(t = T N ) and c(t = T N ) are known.
• Guess for flux. Make a guess for qn. This imposes the Robin condition Eq. (2.83) at interface0.
• Pore-scale evolution. The pore-scale equation Eq. (2.81), supplemented with boundary

condition Eq. (2.82), is evolved from T N to T N+1.
• Evaluation of boundary integrals. The right hand side of Eq. (2.91) is evaluated together with the

integral term in Eq. (2.85). The latter imposes the Robin condition Eq. (2.85) at the interface0.
• Continuum-scale evolution. The continuum-scale concentration c is evolved from T N to T N+1

by Eq. (2.80).
• Continuum-scale concentration evaluation. The function G is computed by means of Eq. (2.91).
• Convergence check and iteration. For a given tolerance ε, if |G(qn, c0)| > ε, the Broyden

method (or another root-finding algorithm) is used to refine the guess of qn and go to step 2.
If |G(qn, c0)|≤ ε, then the convergence is reached. March forward in time (N := N + 1) and
go to step 1.

2.5 CONCLUSIONS

Our study leads to the following major conclusions:

• While capable of describing many processes at a variety of different scales, macroscopic mod-
els might breakdown. We established conditions under which macroscopic reaction-diffusion
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equations (RDEs) provide an adequate averaged description of pore-scale processes. We
showed that the range of applicability of macroscopic RDEs and various transport regimes
can be described by a phase diagram in a space spanned by the dimensionless Damköhler
number and a scale separation parameter. This was accomplished by upscaling a system of
nonlinear diffusion-reaction equations at the pore-scale by means of volume averaging tech-
nique. For physical phenomena that do not satisfy such conditions, an upscaled (local) equation
does not generally exist and integro-differential (non-local in space and time) alternatives or
hybrid models must be used instead.

• The previous result was generalized by considering macroscopic advection-dispersion-reaction
equations (ADREs). The method of multiple-scale expansion was used to upscale to the contin-
uum (Darcy) scale a pore-scale advection-diffusion equation with nonlinear reactions entering
through a boundary condition on the fluid-solid interfaces. The range of applicability of macro-
scopic ADREs can be described with a phase diagram in the (Da, Pe)-space (where Da and
Pe are Damköhler and Péclet numbers, respectively). The latter is parametrized with a scale-
separation parameter, defined as the ratio of characteristic lengths associated with the pore-and
macro-scales. This phase diagram revealed that transport phenomena dominated at the pore-
scale by reaction processes do not lend themselves to macroscopic descriptions and effective
parameters do not generally exist. These results generalize our previous findings relative to
RDEs and suggest that they are universal, i.e., independent of the choice of an upscaling
technique.

• When the validity of continuum-scale models cannot be ascertained a priori in small portions
of the computational domain, hybrid models that couple pore- and continuum-scale representa-
tions can be used. We developed a general intrusive hybrid algorithm to incorporate pore-scale
effects into continuum models of reactive transport in fractured media. This formulation is
based on overlapping the pore- and continuum-scale representations and therefore requires the
modification of some coefficients in the discretized system of equations. We applied our algo-
rithm to model Taylor dispersion in a planar fracture with chemically reactive walls. Existing
analytical solutions served as validation. The hybrid model formulation reduces to a zero-
finding algorithm for a vector function: this suggests its high applicability to a wide variety of
problems and numerical schemes. The proposed method is capable of handling highly local-
ized heterogeneities, which provides a considerable improvement in accuracy and enables one
to properly capture the pore-scale physics.

• A desirable feature of a hybrid model is its ability to be easily incorporated into existing (legacy)
codes/software. Even though not necessary to this purpose, a formalization that is not intrusive
would render such a task much easier. Therefore we developed an alternate formalization for
the hybridization that is nonintrusive and a priori does not require mesh refinement on the
continuum-scale subdomain to match the mesh dimension on the pore-scale subdomain.
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