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[1] Coupled flows through and over permeable media,
also known as obstructed shear flows, are ubiquitous to
many environmental systems at different scales, including
aquatic flows over sediment beds, and atmospheric flows
over crops and cities. Despite their differences, such
flows exhibit strong dynamic similarities among systems
and scales, as evidenced by the recent finding of empirical
universal scaling laws correlating relevant length and
velocity scales. We propose a reduced complexity model
for obstructed shear channel flows, which couples Brinkman
with Reynolds equations to describe the flow within
and above the obstruction. We derive scaling laws by
intermediate asymptotic analysis of a Darcy-Brinkman
type solution in the low permeability limit. The approach
highlights the importance of the effective permeability
of the obstruction as a critical parameter governing the
system dynamical response. The model results are in good
agreement with the scaling laws empirically calculated in
other studies. Citation: Papke, A., and I. Battiato (2013), A
reduced complexity model for dynamic similarity in obstructed
shear flows, Geophys. Res. Lett., 40, doi:10.1002/grl.50759.

1. Introduction
[2] Coupled flows through and over permeable media,

also referred to as “obstructed shear flows” [Ghisalberti,
2009], occur in a variety of environmental (and engi-
neered) systems. In aquatic and terrestrial environments,
some examples include laminar or turbulent flows over sed-
iment beds, submerged vegetation, coral reefs, forests, crop
canopies, and cities.

[3] The dynamics of the flow at the interface between the
obstruction and the free fluid is critical in determining mass,
heat, and momentum transfer between the two regions. For
example, wind-plant interactions determine thermal convec-
tion and seed dispersion [de Langre, 2008], together with
carbon dioxide and energy exchange between canopies and
the atmosphere [Baldocchi and Meyers, 1998]; in aquatic
ecosystems, vegetation influences temperature of the envi-
ronment and the supply of light, oxygen, carbon, and nutri-
ents [Carpenter and Lodge, 1986]. We refer to, e.g., Nepf
[2012], de Langre [2008], and Finnigan [2000] for reviews
on terrestrial and aquatic canopy flows.

1Department of Mechanical Engineering, Clemson University,
Clemson, South Carolina, USA.

2Max Planck Institute for Dynamics and Self-Organization, Göttingen,
Germany.

Corresponding author: I. Battiato, Department of Mechanical Engineer-
ing, Clemson University, 233 Fluor Daniel Building, Clemson, SC 29634,
USA. (ibattia@clemson.edu)

©2013. American Geophysical Union. All Rights Reserved.
0094-8276/13/10.1002/grl.50759

[4] A common feature to many obstructed shear flows is
the experimental evidence of Kelvin-Helmholtz (KH) type
vortices generated by an inflection point in the mean veloc-
ity profile. Similar coherent structures have been observed
in boundary-layer flows adjacent to a range of porous
[Jiménez et al., 2001; Shvidchenko and Pender, 2001]
and roughness layers, e.g., grooves or spanwise cylinders.
Numerical simulations revealed that turbulent channel flows
over sediment (i.e., packed) beds are dominated by a KH
type of instability as well [Breugem et al., 2006]. Other
types of obstructed shear flows, such as flows over coral
reefs and urban canopies, exhibit an inflection point in
the mean velocity profile while little evidence of coherent
structures exists.

[5] It has been suggested that coherent vortical structures
generated by a shear instability may be a common feature
of flows over rough or permeable media [White and Nepf,
2007]. Evidence of such dynamical similarity for a range
of environmental flows is provided in Ghisalberti [2009],
where scaling laws are empirically developed from a set
of data, spanning systems from the millimeter to the meter
scale. Both laboratory and field data of flows over sub-
merged aquatic vegetation canopies, terrestrial vegetation
canopies, coral reefs, dense porous media, and experimental
flows adjacent to vegetation were considered [Ghisalberti,
2009, and references therein]. Such laws relate relevant
length and velocity scales to each other, e.g., the extent of the
shear penetration into the obstruction with the drag length
scale, and the slip velocity to the friction velocity.

[6] In this letter, we propose a reduced complexity
semiempirical model for obstructed shear flows, which treats
the obstruction as a porous medium and couples Brinkman
with Reynolds equations to describe the flow within and
above the obstruction. This allows us (i) to derive ana-
lytical solutions for the mean velocity and stress profiles
within the obstruction and (ii) to establish self-similarity of
coupled flows inside and over permeable layers as interme-
diate asymptotics in the low permeability limit. The previous
results, combined with the experimental observation that the
canopy shear layer parameter is statistically constant, lead
to scaling laws in good agreement with those empirically
identified by Ghisalberti [2009].

2. Reduced Complexity Model
[7] We consider a fully developed incompressible fluid

flow in a two-dimensional channel formed by two imper-
meable walls at a mutual distance of H + 2L. The bottom
part of the channel, Oy 2 (–H, 0), is occupied by an array of
obstacles (aquatic or terrestrial vegetation, urban canopies,
etc.) which we model as a porous medium with permeability
K (see Figure 1). The flow is driven by an imposed mean
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Figure 1. (a) Schematics of channel flow through Oy 2 [–H, 0] and above Oy 2 (0, 2L], a forest of cylindrical obstacles. (b)
Effective medium representation of the obstruction. The solid line represents the (spatial) mean velocity profile, Ou(Oy) inside
and above the porous medium, and OU is the velocity coupling the porous medium with the free flow at the fictitious interface
(dashed line).

pressure gradient dOx Op < 0. We use steady state Reynolds
equations to describe fully developed turbulent flow over the
porous layer, Oy 2 (0, 2L),

!dOyOy Ou – " dOyhOu0Ov0i – dOx Op = 0, Oy 2 (0, 2L), (1)

where " and ! are the fluid density and dynamic viscosity,
Ou = [Ou, Ov] denotes the mean velocity, Ou0 and Ov0 are the veloc-
ity fluctuations about their respective means, and hOu0Ov0i is the
Reynolds stress. Fully developed turbulent channel flow has
velocity statistics that depend on Oy only. Equation (1) can be
closed by employing the turbulent viscosity hypothesis,

hOu0Ov0i = –#t(Oy)dOy Ou, (2)

where #t is the eddy viscosity. The eddy viscosity clo-
sure assumption has been successfully employed to model
obstructed shear flows elsewhere [Ghisalberti and Nepf,
2004, equation (5)], and it is therefore deemed reasonable.
Combining (2) with (1), we obtain

dOy O$(Oy) – dOx Op = 0, Oy 2 (0, 2L), (3)

where O$(Oy) =!T(Oy)dOy Ou, !T(Oy) =! + !t(Oy), and !t = "#t. Inte-
grating (3) from Oy=0+ to Oy=L, while assuming that O$(L)!0,
we obtain

O$ (0+) = !T(0+)dOy Ou|0+ ! –LdOx Op, (4)
which provides a condition for the stress at the interface
between free and filtration flows. The former assumption
is not strictly valid since the flow is not perfectly symmet-
ric about Oy=L due to a nonzero velocity OU at the interface
between the channel and the porous medium. However,
O$ (L)!0 represents an increasingly better approximation as
the permeability of the obstruction (and OU ) decreases.

[8] The flow through the porous medium region,
Oy=(–H, 0), can be described by Brinkman equation for the

horizontal component of the intrinsic velocity Ou(Oy) [Hsieh
and Shiu, 2006; Battiato et al., 2010; Battiato, 2012],

!e dOyOy Ou – !eK–1 Ou – dOx Op = 0, Oy 2 (–H, 0), (5)

where the effective viscosity !e is a fitting parameter that
arises from homogenization techniques [Auriault, 2009],
and K is the porous medium permeability. While the latter
can vary with Oy, we treat it as constant throughout the porous
medium. Guided by experimental evidence [e.g., Ghisalberti
and Nepf, 2004; White and Nepf, 2007; Poggi et al., 2009;
Katul et al., 2011], we impose a no-shear condition at
Oy=–H, and the continuity of velocity and shear stress at the
interface, Oy=0, between the free and obstructed flows:

dOy Ou(–H) = 0, Ou(0–) = OU, !edOy Ou|0– = !T(0+)dOy Ou|0+ , (6)

where OU is an unknown velocity at the interface. Exper-
imental measurements of obstructed shear flows exhibit
smooth mean velocity profiles across the interface separat-
ing the vegetated layer from the free flow. Therefore, we set
!e := ! + !t(0+) in equations (5) and (6). For |Oy|<O(K1/2),
the Brinkman term in equation (5) is negligible, and a
Darcian mean velocity profile, OUd = –KdOx Op/!e, is recovered.

[9] Choosing the height of the porous medium, H, the
velocity q=–H 2dOx Op/!e and the fluid effective viscosity,
!e, as repeating variables, equation (5) can be cast in
dimensionless form,

dyyu – %2u + 1 = 0, y 2 (–1, 0), (7)

subject to

dyu|–1 = 0, u(0–) = U, dyu|0– = ı, (8)

where u= Ou/q, U= OU/q, and ı =L/H. In (7), the param-
eter %2 =H2/K is inversely proportional to permeability.
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The system (7)–(8) is amenable to an analytical solution
for the dimensionless velocity distribution u(y) inside the
obstruction y 2 [–1, 0]:

u(y) = %–2 + C1e!y + C2e–!y, (9a)
C1,2 = (U – %–2 ˙ ı%–1)/2, (9b)

U = %–2 + ı%–1 coth %. (9c)
In (9), the dimensionless Darcy velocity is given by
Ud = OUd/q = %–2.

3. Quantities of Interest
[10] The dynamics of obstructed shear flows, and specif-

ically of flows above canopies [Ghisalberti, 2009], is
described by few characteristic velocity and length scales.

[11] The relevant velocity scales are the interfacial veloc-
ity, OU, the Darcy velocity deep in the obstruction, OUd, and
the friction velocity, Ou" , defined as

Ou" =
p

O$ (0)/". (10)

[12] The penetration length, Oıe, represents the penetration
distance of the vortices into the canopy and is defined as
the distance from the interface, Oy=0, where the stress has
decayed to some fixed, however arbitrary, percentage of its
maximum value measured at the interface, O$max = O$(0). Often,
such percentage is fixed at 10% of O$max [Nepf and Vivoni,
2000; Ghisalberti, 2009], i.e.,

Oıe : O$(– Oıe) = 0.10 O$(0). (11)

The length Oıe is the primary scale determining the mean res-
idence time within the obstruction and separates the canopy
upper layer of rapid renewal from a lower layer of limited
mixing rates [Ghisalberti and Nepf, 2005].

[13] Another important length scale, beside the obstruc-
tion height H, is the drag length scale, Ob,

Ob :=
1

CDa
, (12)

where CD and a are the drag coefficient of the medium and
the frontal area of the obstructions per unit volume, respec-
tively. The drag length scale is related to the canopy shear
layer parameter, CSL, which is statistically constant across a
wide range of experiments [Nepf et al., 2007], i.e.,

CSL := CDa
OU

dOy Ou|0
! 0.23. (13)

4. Self-Similarity in Obstructed Shear Flows
4.1. Data

[14] In his work, Ghisalberti [2009] identifies universal
laws between relevant velocity and length scales, which
strongly suggest the inherent dynamic similarity of a vari-
ety of obstructed shear flows on scales from O(mm) to
O(10m). The author employs data from over 100 flows,
including flows over submerged aquatic and terrestrial veg-
etation canopies, urban canopies (including pressure-driven
wind tunnel experiments), coral reefs, and dense porous
media, just to mention a few. Some of the restrictions to
the selected data include the following: (i) obstructions with
CDaH>0.25, i.e., the obstructions had to be sufficiently

dense (i.e., low permeable) to induce an inflection point in
the mean velocity profile; and (ii) flows with CDaL>0.5,
i.e., flows where the upper boundary (e.g., free surface or
the channel half height) does not limit the vortex growth.
The collected data revealed the following scaling laws
[Ghisalberti, 2009]:

Oıe ! 1
3

Ob, (14a)
OU – OUd ! 2.6Ou" . (14b)

Figures 2(a) and 2(b) (adapted from Ghisalberti [2009],
Figures 4(a) and 4(b)) report data as collected by Ghisalberti,
and the empirical scaling laws (14a) and (14b) (solid
grey lines) with their 90% prediction interval (dashed
lines), respectively.

4.2. Self-Similarity by Asymptotic Analysis
[15] Following Battiato [2012], we seek dynamic similar-

ity by studying the asymptotic behavior of the solution (9)
in the low permeability limit, i.e., %!+1. The notation
%!+1 will be always implied whenever an asymptotic
behavior is calculated.

[16] Since coth% " 1, we obtain

U " ƒ + 1
%2 (15)

where ƒ=ı%. Equation (15) exhibits two different limits
depending on whether ƒ#1 or ƒ$1. The parameter ƒ
is a dimensionless number that compares the height of the
free flow region to the transition zone thickness (the dis-
tance away from the interface y=0 where the velocity profile
becomes Darcian). As in Battiato [2012], a classification
between thin (ƒ#1) and thick (ƒ$1) porous media is
employed. Unlike its counterparts based solely on geomet-
rical ratios (e.g., ı #1 or ı $1), this definition engenders
a dynamical classification. It depends on the medium per-
meability and may not be directly related to the physical
dimensions of the porous layer. For example, a medium is
classified as thin if, for a fixed height ratio ı, its dimension-
less permeability is sufficiently low, i.e., %#ı–1 (or ƒ#1).
For thin and thick porous media, U"ı/% and U"%–2,
respectively. Combining (9c) with (9b), while observing that
coth% – 1"2e–2!, we obtain

C1 " ı

%
, (16a)

C2 " ı

%e2!
. (16b)

Inserting (16) in (9a) leads to the following asymptotic
behavior:

u?(y?; %) := [u(y?/%; %) – Ud] " ı%–1ey? (1 + e–2y?–2!),
(17)

where y? =%y, with y? 2 [–%, 0], and u? are a rescaled coor-
dinate and velocity, respectively. Since –2y? – 2%<0 for any
y? 2 [–%, 0], the exponentially decaying term in (17) can be
neglected, and (17) can be further simplified to

u?(y?; %) " ı%–1ey? , y? 2 [–%, 0]. (18)

Similarly, an asymptotic analysis of the dimensionless stress
$ = O$H/(!eq)=dyu gives

$(y?) " ıey? , y? 2 [–%, 0], (19)
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Figure 2. Empirical (solid grey lines) and calculated (solid
black lines) scaling laws as given in (14a) (or (14b)) and
(24) (or (30)), respectively. The dashed grey lines represent
the 90% prediction interval associated with the empiri-
cal scaling laws (14a) and (14b). Data, reproduced from
[Ghisalberti, 2009, and references therein], include several
systems: experimental flows over rigid model aquatic veg-
etation (blue squares), coral reefs (orange circles), dense
porous media (pink squares), waving model aquatic vegeta-
tion (brown inverted triangles), model terrestrial vegetation
(green triangles), model urban canopies (cyan diamonds),
real flows over terrestrial vegetation (red triangles), and
urban canopies (black diamonds).

i.e., $(y?) exhibits a self-similar behavior independent of
medium permeability in the entire domain. Combining (11)
with (19) evaluated at y? =0, we obtain

%ıe " ln 10 (20)

with ıe = Oıe/H, the dimensionless penetration length.
Equation (20) provides a scaling behavior for ıe in the low
permeability limit and shows that the penetration length
is inversely proportional to % (or directly proportional to

permeability). Since dyu=$ , casting (13) in dimensionless
form, yields

CDaHU
$(0)

! 0.23. (21)
Inserting (19) into (21), while accounting for the asymptotic
behavior of U in thin porous media, leads to

CDaH
%

" 0.23. (22)

Equation (22), which provides a relationship between the
drag length scale and permeability, allows one to a pos-
teriori verify if the asymptotic analysis developed in the
low permeability limit (%!+1) is a valid approximation
for the data set investigated by Ghisalberti [2009]. The
“dense” porous media condition, i.e., CDaH>0.25, com-
bined with (22), corresponds to O(%)>1, which is consistent
with the asymptotic limit investigated here. Additionally,
the condition CDaL>0.5, when cast in terms of the dimen-
sionless thickness ı, becomes CDaH>0.5/ı. Combining the
latter with (22) leads to the bound ƒ>2.17, which is con-
sistent with the thin porous medium approximation (ƒ>1).
Combination of (20) and (22) leads to

OıeCDa " 0.23 ln 10. (23)
Alternatively, (23) can be rearranged as follows:

Oıe ! 0.53 Ob, (24)

which recovers the linear dependence between Oıe and Ob, as
empirically observed in the scaling law (14a). Figure 2(a)
shows the relationship between the penetration length Oıe
and the drag length scale Ob as described by (14a) (solid
grey line) and (24) (solid black line). The scaling result-
ing from the proposed model as intermediate asymptotic
of a Darcy-Brinkman-type solution in the low permeabil-
ity limit well matches the empirical scaling proposed by
Ghisalberti [2009].

[17] The drag coefficient is defined as CD = 2| OFD|/("Af OU2
c)

where OFD(Oy) is the drag force on array elements of total
frontal area Af(Oy), and OUc is a representative fluid velocity.
The former equation can be rewritten as

CDa =
2| OF|
" OUc

2
(25)

where OF is now the drag force per unit volume of
porous medium. In a Brinkman medium, OF=–!e Ou/K [Guo
et al., 2000]. At the interface, OF(0–)=–!e OU/K. The former
equation can be recast in terms of dimensionless quantities
as,

OF(0) = –
%2U
H

O$ (0)
$(0)

, (26)
since O$ /$ =!eq/H by definition of dimensionless stress.
Inserting (26) in (25) while accounting for (10) leads to

CDaH = 2%2 U
$(0)

! Ou"

OUc

"2

. (27)

In the low permeability limit and for thin porous media, (15)
and (19) give U"ı/% and $(0)"ı, respectively. Therefore,
(27) becomes ! Ou"

OUc

"2

" 1
2

CDaH
%

. (28)
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Inserting (22) in (28) gives

OUc " 2.95Ou" . (29)

A priori, the characteristic velocity OUc can be taken as OU,
OUd, or OU – OUd [Ghisalberti, 2009]. Choosing OU – OUd as
characteristic velocity in (29) yields

OU – OUd " 2.95Ou" . (30)

We stress that the alternative choice OUc := OU would be still
appropriate since both OU and OU – OUd (= qu?(0)), as defined
in (17), exhibit the same asymptotic behavior as % ! +1,
OU/q " u?(0) " ı/%. On the contrary, based on the pro-
posed model, the choice of OUd seems less appropriate since
it has a different scaling, i.e., OUd/q " 1/%2. Figure 2(b) plots
the experimental data as in Ghisalberti [2009], and the scal-
ing laws (14b) and (30) obtained by data fitting (solid grey
line) and the proposed model (30) (solid black line), respec-
tively. The model results are in good agreement with the
experimental data.

5. Concluding Remarks
[18] It has been empirically showed that flows over per-

meable layers, alias obstructed shear flows, exhibit dynamic
similarity across scales ranging from the millimeter to the
meter, and in a plethora of environmental systems.

[19] We propose a reduced complexity model for turbu-
lent flow over obstructions which treats the obstruction as a
porous medium and employs a coupled system of Brinkman
and Reynolds equations to analytically determine the mean
velocity profile inside the porous medium. This approach
highlights the critical importance of the effective permeabil-
ity of the obstruction (as opposed to its porosity, as generally
reported in other studies) on the dynamical behavior of
the system.

[20] Asymptotic analysis of the solution in the low per-
meability limit allows one (i) to identify a critical scale
parameter, ƒ, to formally classify thin (ƒ # 1) and thick
(ƒ $ 1) porous media, and (ii) to analytically derive uni-
versal scaling laws relating characteristic length and velocity
scales in obstructed shear flows.

[21] The predicted scaling laws derived from the proposed
model well compare with the empirical ones calculated
by Ghisalberti [2009]. Such agreement suggests that the
proposed approach may be an appropriate framework for
modeling shear flows over obstructions at a variety of scales.
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ing from Georg-August-Universität Göttingen and the Max Planck Institute
for Dynamics and Self-Organization, Göttingen.

[23] The editor thanks one anonymous reviewer for assistance evaluat-
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