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Abstract. Many studies in the last decade have revealed that patterns at the microscale can reduce skin
drag. Yet, the mechanisms and parameters that control drag reduction, e.g. Reynolds number and pattern
geometry, are still unclear. We propose an effective medium representation of the micro-features, that treats
the latter as a porous medium, and provides a framework to model turbulent flow over patterned surfaces.
Our key result is a closed-form expression for the skin friction coefficient in terms of frictional Reynolds
(or Kármán) number in turbulent regime, the viscosity ratio between the fluid in and above the features,
and their geometrical properties. We apply the proposed model to turbulent flows over superhydrophobic
ridged surfaces. The model predictions agree with laboratory experiments for Reynolds numbers ranging
from 3000 to 10000.

1 Introduction

Surfaces patterned with microtopological features (e.g. ri-
blets, regular or random posts arrangements) have shown
drag-reducing abilities in both laminar [1–5] and turbu-
lent [6,7] regimes. This phenomenon has been observed in
both Wenzel [2–4,7,8] and Cassie [6] states. The former is
characterised by the fluid impregnating the textured sur-
face, while in the latter the liquid interface is suspended
on an air cushion above the roughness peaks.

The optimal design of nano- and micron-scale topolog-
ical features is still hampered by the relative lack of quan-
titative understanding of their impact on macroscopic flow
observables (e.g. skin friction coefficient, slip length). The
effect of Reynolds number is also unclear and the upper
limit of turbulent drag reduction still unknown [8]. A suit-
able framework for quantifying the effective properties of
such surfaces and their connection to microscopic features
is needed [9].

Attempts to relate geometrical properties of the micro-
features to macroscopic quantities are mainly phenomeno-
logical [4], and analytical expressions are available only for
tractable geometries [10,11]. Numerical studies of laminar
and turbulent flows over patterned surfaces allow one to
relax some of the assumptions underlying available ana-
lytical or semi-analytical solutions to more realistic flow
and geometric configurations [12,13]. However, numerical
modeling of drag reduction in turbulent flows poses spe-
cific challenges due to the large disparity of spatial scales
between the surface features and the turbulent structures.
This restricts the Reynolds number range of DNS.
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In this paper we propose an effective medium theory
to model turbulent channel flow above micro-patterned
surfaces. By treating the latter as a porous medium, we
develop closed-form expressions for the skin friction coef-
ficient in terms of the geometrical properties of the pat-
tern and the friction Reynolds (or Kármán) number. This
is achieved by coupling the Reynolds equation for fully
turbulent channel flow over the pattern to the porous
media Brinkman equation for flow through the pattern.
While applicable to patterned surfaces with different mi-
crotopologies and coatings, we test the model veracity by
comparing our closed-form expressions with skin friction
data of turbulent channel flows over superhydrophobic
grooved surfaces for Reynolds number ranging from 3000
to 10000 [7].

2 Model formulation

We consider pressure-driven channel flow through, ŷ ∈
(−H, 0), and over, ŷ ∈ (0, 2L), an array of micro-ridges
(see fig. 1). Following [14,15], we treat the micro-patterned
surface as a porous medium with permeability K. An ef-
fective medium description of the microfeatures requires
a separation of scales between the characteristic width of
the ridges and the size of the macroscopic domain (i.e.
the channel) [16]. This is generally the case with micror-
idged coatings where the typical dimension of the features
is on the order of microns, while the sample size is on the
order of millimeters or larger. We couple Brinkman and
Reynolds equations to describe a distribution of the hor-
izontal component of the average velocity û(ŷ) through,
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Fig. 1. Schematic of the geometry (not to scale). The arrow
indicates the mean flow direction.

ŷ ∈ (−H, 0), and above the pattern, ŷ ∈ (0, 2L):

µedŷŷû − µeK
−1û − dx̂p̂ = 0, ŷ ∈ (−H, 0), (1a)

µdŷŷû − dŷ〈û
′v̂′〉 − dx̂p̂ = 0, ŷ ∈ (0, 2L), (1b)

where µe and µ are the dynamic viscosities of the fluids in-
side and above the porous medium (i.e. grooved surface),
respectively. In the turbulent regime, dx̂p̂ < 0 is an exter-
nally imposed mean pressure gradient, û = [û, v̂] denotes
the mean velocity, û′ and v̂′ are the velocity fluctuations
about their respective means, and 〈û′v̂′〉 is the Reynolds
stress. Fully developed turbulent channel flow has veloc-
ity statistics that depend on ŷ only. No-slip is imposed
at ŷ = −H and ŷ = 2L. The formulation of appropri-
ate boundary conditions at the interface between free and
filtration (porous media) flows is still subject to open de-
bate, which stems from the dispute of whether tangential
velocity and shear stress at the interface are continuous
or discontinuous [17–21]. Following [17, 20–22] and many
others, we postulate the continuity of both velocity and
shear stress at the interface, ŷ = 0. Such conditions have
proven to provide accurate description of the macroscopic
response of systems at the nanoscale [14, 15, 20]. Hence,
eqs. (1) are subject to

û(−H) = 0, û(2L) = 0,

û(0−) = û(0+) = Û , µedŷû|0− = µdŷû|0+ , (2)

where Û is an unknown (slip) velocity at the interface
ŷ = 0.

Choosing (L, µ, q) as repeating variables, with
q = −L2dx̂p̂/µ a characteristic velocity, eq. (1) can be
cast in dimensionless form

Mdyyu − Mλ2u + 1 = 0, y ∈ (−δ, 0), (3a)

dyyu − Re2
τ dy〈u

′v′〉 + 1 = 0, y ∈ (0, 2), (3b)

subject to u(−δ) = 0, u(2) = 0, u(0−) = u(0+) = U , and
Mdyu|0− = dyu|0+ , where y = ŷ/L, δ = H/L, M = µe/µ,

u = û/q, and U = Û/q. The parameter λ2 = (MK)−1L2

is inversely proportional to dimensionless permeability,
K/L2. The limit λ → +∞ corresponds to the diminishing

flow through the patterns due to decreasing permeabil-
ity K. Furthermore, the Kármán (or frictional Reynolds)
number, Reτ , is defined as the Reynolds number based
on the channel half-width and the skin-friction velocity
ûτ = (−Ldx̂p̂/ρ)1/2

Reτ := ûτL/ν, or equivalently Reτ =(qL/ν)1/2, (4)

and it determines the relative importance of viscous and
turbulent processes. Assuming the surface of the porous
medium is hydrodynamically smooth, the law of the wall
imposes dyu|0+ = 1 since u(y → 0+) = y + U in the vis-
cous sublayer [15]. Therefore, inside the porous medium,
i.e. y ∈ [−δ, 0], the solution for the dimensionless velocity
distribution u(y) is given by

u(y) = (Mλ2)−1 + C1e
λy + C2e

−λy, (5a)

C1,2 = ±
1

Mλ2

(Mλ2U − 1)e±δλ + 1

eδλ − e−δλ
, (5b)

U = (Mλ2)−1(1 + λ tanh δλ − sech δλ). (5c)

The skin friction coefficient is defined as Cf =2τ̂0/(ρû2
b),

where τ̂0 = µdŷû|0+ is the shear stress at the edge of
the pattern, ûb = qχ is the average flow velocity, and

χ = (2 + δ)−1
∫ 2

−δ
u(y)dy is a dimensionless bulk velocity.

From (4),

q =
νRe2

τ

L
. (6)

Then, ûb = νRe2
τχ/L and the skin friction coefficient is

written in terms of Reτ ,

Cf (Reτ ) =
2

Re2
τχ2

, (7)

since dyu|0+ = 1. The dimensionless bulk velocity χ is
rearranged as follows:

χ =
χδ + 2χt

2 + δ
, χδ =

∫ 0

−δ

u(y)dy, χt =
1

2

∫ 2

0

u(y)dy.

(8)
Equation (8) shows the impact of the pattern on the
skin friction coefficient: χ ≡ χt when δ = 0, i.e. for a
smooth channel. Integrating (5a), and combining the re-
sult with (5b) and (5c), we obtain

χδ = (Mλ3)−1 [λ(1 + δ) + sechΛ (cschΛ − λ) − cothΛ] ,
(9)

with Λ = λδ. The scale parameter Λ provides a formal
classification between thin (Λ ≪ 1) and thick (Λ ≫ 1)
porous media [15]. Since the pattern vertical length scale
is generally very small compared to the height of the chan-
nel, i.e. δ → 0, we look for the asymptotic behaviour of
χδ as Λ → 0. In this limit

χδ ∼
δ

Mλ2
. (10)

Assuming that the effect of the slip velocity Û on the
bulk velocity in the channel qχt is negligibly small when
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δ → 0 (see fig. 1(a) of [23]), we employ the log-law and the
velocity-defect law of turbulent flow in a channel of width
2L to provide an estimate for χt. These two laws combined
relate the friction velocity ûτ to the channel bulk velocity
qχt,

1

κ
+

qχt

ûτ
=

lnReτ

κ
+ 5.1, (11)

where κ = 0.41 is the von Kármán constant. Inserting (6)
in (11), we obtain

χt(Reτ ) =
lnReτ + 5.1κ − 1

κReτ
, (12)

since ûτ = νReτ/L. Combining (7), (8), (10) and (12)
we obtain a closed-form expression for the skin friction
coefficient in terms of the viscosity ratio between the fluids
inside and over the patterns, M , Kármán number, Reτ ,
and the pattern height and effective permeability, δ and
λ, respectively,

Cf = Cs
f

(

2 + δ

2 + T δ

)2

, (13a)

with

T =
1

Mλ2χt(Reτ )
, Cs

f = 2

(

κ

lnReτ + 5.1κ − 1

)2

.

(13b)
Here Cs

f represents the skin friction coefficient in a channel
with smooth walls. Similarly, for two patterned walls, the
skin friction coefficient, Cf2, is

Cf2 = Cs
f

(

1 + δ

1 + T δ

)2

. (14)

The turbulent drag reduction R%
D = (1−Cf/Cs

f )% for

a channel with one (or two) micropatterned walls can be
readily calculated from (13a) (or (14)):

R%
D = 100 −

(

2 + δ

2 + T δ

)2

%. (15)

Equations (13) and (14) provide closed-form expressions
for Cf whenever the effective permeability of the micro-
pattern, the geometry of the channel and the operational
flow conditions are known.

3 Comparison with experiments

We test the robustness of our model by comparing it
with experiments [7]. Data sets collected by ref. [7] (see
figs. 8 and 9 therein) include measurements of skin friction

and drag reduction coefficients, Cf and R%
D respectively,

as a function of Reynolds number (Re = 2Lûb/ν) from
channels with smooth walls, and one and two superhy-
drophobic walls containing 30µm wide microridges spaced
30µm apart. A set of dimensional and dimensionless pa-
rameters for the experiments are listed in table 1. The

Table 1. Parameter values used in the experiments of [7] with
channels with smooth walls, one and two superhydrophobic
surfaces with 30 µm ridges spaced 30 µm apart. Dimensionless
quantities are calculated from corresponding dimensional pa-
rameters.

Sample Smooth 1 SHS 2 SHSs

L (m) 3.95 · 10−3 3.95 · 10−3 2.75 · 10−3

H (m) 0 25 · 10−6 25 · 10−6

µ (Pa·s) 8.90 · 10−4 8.90 · 10−4 8.90 · 10−4

µe (Pa·s) 8.90 · 10−4 1.78 · 10−5 1.78 · 10−5

δ (-) 0 6.33 · 10−3 9.01 · 10−3

M (-) 1 0.02 0.02

data span almost one order-of-magnitude wide range of
Reynolds number both in laminar and turbulent regimes,
Re ∈ (2000, 10000).

A comparison between model and experiments requires
one to establish a relationship between Re and Reτ . Com-
bining (6) with the definition of dimensionless bulk veloc-
ity χ (i.e. q = ûbχ−1), and multiplying both sides by 2L/ν
leads to

Re = 2χRe2
τ . (16)

For turbulent smooth-channel flows, combining (12)
with (16) leads to a relation between Re and Reτ in the
form Re = 2Reτ (κ−1 lnReτ + 5.1 − κ−1). Similarly, for a
channel with one (or two) micro-patterned surfaces, insert-
ing (8) into (16) leads to Re = 2Re2

τ (2 + δ)−1(χδ + 2χt)
(or Re = 2Re2

τ (1 + δ)−1(χδ + χt)). Since χδ ≪ χt as
δ → 0, a good approximation of the former equations is
Reτ ≈ 0.09Re0.88 for Re < 4 · 104. Additionally, in lami-
nar smooth-channel flows the dimensionless parabolic ve-
locity profile, u(y) = −y2 + y, y ∈ [0, 2], gives χ = 1/3.
When combined with (7) and (16), this leads to the well-
known skin friction formula Cf = 12/Re or, equivalently,
Cf = 18/Re2

τ . The former relationships allow us to rescale
the data points from [7] as showed in fig. 2. Transitional
effects from laminar to turbulent regimes are apparent in
the range Reτ ∈ [100, 150] for channel flow with two su-
perhydrophobic surfaces.

Except for relatively simple configurations (e.g. an ar-
ray of pillars [14]), there exist no exact closed-form expres-
sions that relate the dimensionless effective permeability
λ to the geometrical properties of riblets. Therefore, we
validate the proposed model by employing two sets of in-
dependent measurements from [7]. The first dataset con-
sists of measurements of the skin friction coefficient Cf

in a channel with two micro-patterned walls. Large fluc-
tuations of the skin friction coefficient reflect transitional
effects up to Reτ ≈ 150. For the purpose of this analy-
sis, we consider the subset of the data in the fully tur-
bulent regime represented by a range of Kármán number
Reτ ∈ [150, 200] (see the dash-lined box in fig. 2). Fitting
to these data yields the value of permeability λ = 4.54.
This value is used to make fit-free predictions of the
skin friction coefficient Cf in a channel with one smooth
wall and one micro-patterned wall, for the fully turbu-
lent regime represented by a range of Kármán number
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Fig. 2. Experimental (symbols) and predicted (lines) skin fric-
tion Cf in terms of Reτ . Data adapted from fig. 8 of [7]. Mea-
surements of skin friction coefficient for a channel with smooth
walls (empty squares), one (filled circles) and two (empty cir-
cles) SHS with 30 µm ridges spaced 30 µm apart. The thin
dashed and solid lines represent the theoretical prediction of
the skin friction coefficient for smooth channel, Cs

f , in lami-

nar and turbulent regimes given by Cs
f = 18/Re2

τ and (13b),
respectively. The thick dashed and solid lines represent a one-
parameter fit (λ = 4.54) and a parameter-free prediction of Cf

given by (14) and (13a), respectively. The dashed box contains
the data used for the parametric fitting. Inset: experimental
(symbols) and predicted (lines) drag reduction in terms of Reτ .
Data adapted from (see fig. 9 of [7]).

Reτ ∈ [100, 300]. Figure 2, which compares this prediction
(bold solid line) with the corresponding Cf measurements
(filled dots) comprising the second dataset, shows a good
agreement between data and model solution.

The fitted value of λ corresponds to the permeability
K = 1.8 · 10−5 m2 of the effective porous medium used to
represent the two 30 µm-ridged superhydrophobic walls.
An order-of-magnitude analysis of the permeability of this
porous medium is obtained from Darcy’s law, which states
that the Darcy flux q̂d (volumetric flow rate per unit height
H) is proportional to |dx̂p̂|, the applied pressure gradient,
such that

K =
µe

|dx̂p̂|
q̂d. (17)

Each patterned surface in the experimental setup [7]
is 38.1mm wide, consisting of an array of n ≈ 635 square
ridges of height H = 30µm spaced 30 µm apart. We ap-
proximate the flow between any two ridges with a fully
developed pressure-driven flow between two parallel plates
the distance H apart; the bottom plate is fixed while the
upper plate moves with a uniform speed Û⋆ = (1−φs)

−1Û ,

where Û is the slip velocity measured in [7] and φs =
0.5 is the solid fraction of the patterned surface. Then
q̂d = Û⋆/2 − H2dx̂p̂/µe, and (17) gives the permeabil-

ity of an individual channel Ki = −µeÛ
⋆/(2dx̂p̂)+H2/12

(i = 1, . . . , n). The total permeability of the two patterned
surfaces is K = 2

∑n
i=1 Ki. Such an estimate of perme-

ability, and its relationship to the slip velocity, is qualita-
tively consistent with the numerical simulations performed
by [13]. The latter demonstrates that drag reduction per-
formance increases with increased feature spacing. Specif-

ically, given the same solid fraction φs, [13] predicts higher
slip for features with larger pore space (or higher perme-
ability), e.g. 30µm-30 µm ridges generate higher slip than
15µm-15 µm ridges. Similarly, posts yield higher slip ve-
locities than ridges with the same ratio of microfeature
size to spacing.

In fig. 5b of [7], the slip velocity Û = 0.2m s−1 is re-
ported for the channel with two patterned walls (square
ridges of H = 30µm) and Re = 7930. In the absence of
reported pressure measurements for this channel config-
uration, we employ the pressure drop data reported for
two other channels (see fig. 6 of [7]). In the first chan-
nel (two smooth walls) the pressure drop was |dx̂p̂| =
2.6 kPa · m−1. In the second (both surfaces patterned with
H = 60µm square ridges) it was |dx̂p̂| = 1.4 kPa · m−1.
Using these two values as upper and lower bounds for the
actual |dx̂p̂|, we obtain permeability bounds 1.8 · 10−6 m2

≤ K ≤ 3.3 · 10−6 m2. These estimates differ by a fac-
tor of 5–10 from the fitted value of K = 1.8 · 10−5 m2.
The discrepancy between the two is to be expected due
to deviations of the experiment from the model approxi-
mations and/or highly idealised conditions, which include,
e.g., flow steadiness and one-dimensionality, and hydrody-
namically smoothness of the ridges’ tips.

Next, we discuss some implications of the former
model. Equation (13a) implies that Cf < Cs

f if T > 1, or

Cf < Cs
f if χ−1

t (Reτ ) > Mλ2, (18)

with χt defined by (12) and Reτ > Ret
τ , with Ret

τ the
transition Kármán number between laminar and turbulent
regimes. For channel flow, Ret

τ ≈ 100 (or Ret ≈ 3000). At
any fixed Kármán number, the skin friction Cf is smaller
than its smooth channel counterpart when appropriate
conditions of the roughness/pattern geometry, λ and δ,
and of the fluids, M , are met. Also, since χ−1

t (Reτ ) is a
convex function, (18) implies the following.

Proposition. For any fixed configuration of obstacles, λ,
and fluid viscosity ratio, M , such that Mλ2 ≥ χ−1

t (Ret
τ ) ≈

7.2, there exists a critical Kármán number, Re⋆
τ , such that

Cf ≤ Cs
f if Reτ > Re⋆

τ , where Re⋆
τ is a root of the

transcendental equation

κRe⋆
τ (lnRe⋆

τ + 5.1κ − 1)
−1

= Mλ2, Re⋆
τ > Ret

τ . (19)

The existence of a Re⋆
τ is consistent with experimen-

tal results, where drag reduction is initiated at a criti-
cal Reynolds number, just past the transition to turbu-
lent flow [7]. The former statement can be reformulated
as a condition on the geometrical properties of the pat-
terns/roughness, λ, and the viscosity ratio, M : for any
fixed value of Kármán number Re0

τ > Ret
τ , drag reduction

is achieved if the product Mλ2 is bounded from below and
above, i.e.

χ−1
t (Ret

τ ) < Mλ2 < χ−1
t (Re0

τ ), Re0
τ > Ret

τ , (20)

with χt defined in (12), and χ−1
t (Ret

τ ) ≈ 7.2.
This analysis has the following implications. i) The

proposed model suggests that drag reduction is achieved
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when λ > 1, i.e. in the porous medium regime [15], and
for an intermediate range of effective permeability values.
The upper bound on λ (i.e. the minimum value of per-
meability) is determined by the magnitude of Re0

τ , i.e.

the operational flow conditions of the apparatus/system.
This is consistent with passive turbulent flow control sys-
tems where porous surfaces in airfoils are employed for
drag reduction purposes. ii) The transition between drag
enhancing and reducing regimes is governed by the geo-
metric parameters of the obstacles, λ, and the viscosity
of the fluid flowing between the roughness/pattern and
above it, M . iii) For any fixed geometry and Reτ > Re⋆

τ ,
lower drag is achieved in Cassie/Fakir state than in Wen-
zel state since M < 1 in the former case. Also this result
is consistent with experimental observations. While the
former observations are qualitatively consistent with ex-
periments, future work will focus on a quantitative anal-
ysis/estimate of each process above mentioned.

4 Concluding remarks

We proposed a novel continuum scale framework to mod-
elling turbulent flows over micro-patterned surfaces. While
applicable to flows over patterned surfaces both in Cassie
and Wenzel state, we test the model on turbulent flows
over superhydrophobic ridged surfaces. To the best of
our knowledge, this is the first continuum scale frame-
work that allows one to successfully quantify and analyti-
cally predict the impact of pattern geometry and Reynolds
number on drag reduction. This is achieved by modelling
the micro-patterned surface as a porous medium, and
by coupling Brinkman equation for flow in porous me-
dia with Reynolds equations, which describe the average
flow through and over the pattern, respectively. This yields
a closed-form solution for the skin friction coefficient in
terms of the frictional Reynolds (Kármán) number, the
viscosity ratio between the outer and inner fluid, and the
geometrical (i.e. height) and effective properties (i.e. per-
meability) of the micro-structure. We demonstrated good
agreement between our model and experimental data.

Based on dynamical and geometrical conditions under
which the proposed model predicts drag reduction, we con-
jecture that the latter might be attributed to a porous-like
medium behaviour of the roughness/pattern. We specu-
late that our results might provide an insight on the tran-
sition between turbulent flows over drag-increasing [24]
and drag-decreasing rough walls where patterned protru-
sions, rigid or compliant [6,25] to the flow, or porous coat-
ings [26], can be used to attenuate near-wall turbulence.
Further, the proposed framework may be directly applied
to model the newly developed slippery infused porous sur-
faces (SLIPs) [27], and serve as a quantitative guidance for
their design and optimisation.

The connection between the flow characteristics at the
pattern-scale and their effective medium behaviour needs
to be elucidated and is subject of current investigations.

Part of this research was developed when the author was first a
postdoctoral fellow at Max Planck Institute for Dynamics and
Self-Organization (MPI-DS), Göttingen, 37077, Germany, and
later a visiting scientist at the Statistical and Applied Math-
ematical Sciences Institute (SAMSI), Research Triangle Park,
NC 27709, USA.
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