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Abstract Coupled flows through and over permeable layers occur in a variety of natural phenomena
including turbulent flows over submerged vegetation. In this work, we employ a two-domain approach to
model flow through and over submerged canopies. The model, amenable of a closed-form solution, couples
the log-law and the Darcy-Brinkman equation, and is characterized by a novel representation of the drag
force which does not rely on a parametrization through an unknown drag coefficient. This approach limits
to one, i.e., the obstruction permeability, the number of free parameters. Analytical expressions for the aver-
age velocity profile through and above the canopies, volumetric flow rate, penetration length, and canopy
shear layer parameter are obtained in terms of the canopy layer effective permeability. The model suggests
that appropriately rescaled velocities in the canopy and surface layers follow two different scaling laws. The
analytical predictions match with the experimental data collected by Ghisalberti and Nepf (2004) and Nepf
et al. (2007).

1. Introduction

Submerged vegetation plays a pivotal role in regulating flow and transport in fresh- and sea-water systems.
Canopies provide essential ecosystem service: they offer protection to fishes and microinvertebrates and
improve the stability of riverbanks by increasing the roughness of the riverbed and decreasing the shear
stress which controls erosion and sediment transport [e.g., Kothyari et al., 2009; Nepf, 2012; Peruzzo et al.,
2013]. Accurate modeling of the velocity profile within and above the canopies is not only crucial in deter-
mining the nutrient dynamics, but also in designing vegetated channels and wetlands, which possess
important ecological [e.g., Ostendorp et al., 2008; Mitsch and Gosselink, 1986], environmental [e.g., Istanbul-
luoglu, 2005], and socioeconomic functions [e.g., Costanza et al., 1997; Katul et al., 2011]. Yet, modeling of
such complex systems has proven to be a formidable task.

A plethora of modelling approaches, both empirical and theoretical, have spurred in the past decades to
describe vegetated channel flows. They include phenomenological models based on scale analysis [e.g.,
Ghisalberti and Nepf, 2002; Huthoff et al., 2007; Katul et al., 2011; Konings et al., 2012], momentum balance
equations derived from double-averaging methods [e.g., Ghisalberti and Nepf, 2004], multiple-domain
approaches [e.g., Nepf and Vivoni, 2000; Hsieh and Shiu, 2006; Huai et al., 2009], and their combinations [e.g.,
Lowe et al., 2008; Poggi et al., 2009]. We refer to Nepf and Ghisalberti [2008] and Nepf [2012] for thorough
reviews on the topic. While empirical approaches offer simple relationships between relevant quantities
(e.g., vegetation-resistance laws), they suffer from an intrinsic lack of generality, as their applicability is lim-
ited to the physical conditions in which such models were originally developed. On the other hand, theoret-
ical approaches (derived from balance laws of continuum mechanics) gain in robustness to the detriment of
simplicity. They are based on Reynolds equations for turbulent transport which require (first or higher order)
closure schemes. The latter can achieve a high degree of sophistication, such as the k-w and k-¢ formula-
tions [e.g., Lopez and Garcia, 2001], compared to their first-order counterparts, e.g., eddy viscosity hypothe-
sis and mixing length approaches [e.g., Poggi et al., 2009]. Yet, experimental evidence of universal scaling
laws suggests that “simple” models may be appropriate to capture the main dynamical features of such
multiscale systems [Ghisalberti, 2009; Papke and Battiato, 2013].

In this letter, we propose a parsimonious (single calibration-parameter) self-consistent two-domain frame-
work to describe turbulent flow in a vegetated open channel. The model, which couples the Darcy-
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A2 Brinkman equation with the log-law
for the flow through and above rigid
vegetation, is amenable of a closed-
form solution for the mean velocity
profile and a number of relevant flow
parameters, e.g., volumetric dis-
charge, penetration length, canopy
shear layer parameter, and friction
factor (section 2). In section 3, we
show that appropriately rescaled
velocities in the surface and canopy
layers follow two different universal
scaling behaviors and we compare
the model predictions with experi-
mental data collected by Ghisalberti
and Nepf [2004] and Nepf et al. [2007].
Finally, we summarize our results in
section 4.

2. Model Formulation

2.1. Two Domain Approach
We consider a two-dimensional fully
developed incompressible turbulent

Figure 1. Sketch of fully developed turbulent flow through, z € (0, H), and above, flow in an open channel of total

Z € (H,H+L), rigid canopies in an open channel of slope 0. A qualitative sketch of height H + L and slope 0, such that
the mean velocity profile i(2) is also provided (solid back line).

So:=tan 0 =~ sin 6. The upper part of

the flow domain, z € (H,H+L), con-

sists of a nonvegetated surface layer
of thickness L, while the bottom part of the channel, z € (0, H), is occupied by rigid canopies, referred to as
the canopy layer (see Figure 1). We model the latter as a porous medium of permeability K [e.g., Hsieh and

Shiu, 2006]. Such an approach has proven successful in modeling flows above obstructions for a variety of

systems at different scales [e.g., Battiato et al., 2010; Battiato, 2012; Papke and Battiato, 2013].

Two main approaches can be used to couple flow over and through permeable layers: single- and multiple-
domain approaches. While the former represents the system with a single domain with nonconstant effec-
tive parameters, the latter employs different mathematical models in each subdomain and enforces appro-
priate boundary conditions at shared interfaces. Here, we employ a two-domain approach and couple the
logarithmic mean velocity profile, or log law, with a porous medium equation to model the coupled flow
above and within the canopies [e.g., Ghisalberti and Nepf, 2009]. Although such an approach cannot capture
the stem-scale turbulence, it has been largely employed since it allows one (i) to quantify the average flow
and the momentum transfer, which regulates biogeochemical processes in the vegetated region, and (ii) to
potentially describe arbitrarily complex geometries with a limited number of parameters [Lowe et al., 2008,
and references therein]. The main novelty of the proposed model, compared to existing ones, lies in its rep-
resentation of the drag force and in its parametrization, which limit to one (i.e., the obstruction permeabil-
ity) the number of free parameters.

In the surface layer, the mean velocity in the direction parallel to the channel bottom, (Z), is commonly
described by one (of the many) variant of the log law [Stephan and Gutknecht, 2002]:

e Uy z .

=U+—In (= H,H+L). 1
@)=0+ 0 (7). 2€ ey i
In (1), k=0.19 is the reduced von Karman constant for vegetated channels [Franca et al., 2008], U is the
(mean) velocity at the top of the canopies, and - is the friction velocity. The value of von Karman coeffi-

cient has undergone, and is still undergoing, intense scientific scrutiny both in smooth-wall flows,
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atmospheric boundary layers and vegetated flows [e.g., Leonardi and Castro, 2010, and references therein].
Some authors go no further than stating that there is no compelling evidence that « is flow independent.
However, there seems to be consensus that in atmospheric boundary layers and flows above permeable
layers i is measurably lower than the smooth-wall value. For dense canopies, the measured Kdrman con-
stant are included in the range of 0.16-0.19 [Kubrak et al., 2008]. The friction velocity is defined in terms of
the stress at the interface between the free and filtration flow, z (H*):

Ge:=/2(H")/p. )

An estimate of 7(H") can be obtained from Reynolds equation for the fully developed turbulent flow above
the canopies,

d;T+pgSe=0, z € (H,H+L), (3a)
where
#(2):=pd;U—p(@'V"), z € (HH+L), (3b)

is the total shear stress, g, i, and p are the gravitational acceleration, the fluid dynamic viscosity, and
density, respectively. In (3b), i’ and ¥’ represent the velocity fluctuations about their respective mean, and
(U'V"y is the Reynolds stress. We employ a turbulent viscosity hypothesis to close (3), i.e., (0'V')=—v,(2)ds 0,
where v, is the eddy viscosity [e.g., Ghisalberti and Nepf, 2004; Poggi et al., 2009]. Inserting the former into
(3b) gives

t(2)=pr(2)d: 0, “)

where u; : =p+pw(2),z € (H,H+L). Integrating (3a) from z=H to z=H+L, while accounting for the zero
shear condition at the free surface, 7(H+L)=0, yields

2(H*)=pgSoL. (5)
Combining (5) and (2), gives
a‘r: gSOL (6)

Consistency between the log law (1) where 4. is given by (6), and the turbulent viscosity hypothesis (4)
requires that, at Z=H,

iz (H")d 1l =pgSol, 7)
where U is defined by (1). This yields to
tr(H")=prHu, 8)
which provides a self-consistent estimate of y at the interface between the free and vegetated flows.

Inside the canopies, we employ the Darcy-Brinkman equation for the horizontal component of the intrinsic
mean velocity U(Z) [e.g., Stephan and Gutknecht, 2002; Katul et al., 2011],

ez 0— K~ '0+pgSo=0, 2 € (0,H) )

where K (L?) is the canopy permeability and . is the fluid “effective” viscosity, respectively.

Guided by experimental evidence [e.g., Ghisalberti and Nepf, 2004; White and Nepf, 2007; Poggi et al.,
2009], equation (9) is subject to the no shear condition at Z=0, and the continuity of velocity

and shear stress at the interface, z=H, between the free and obstructed flows [e.g., Katul et al.,
2011],

2(0)=0, a(H )=0a(H")=U, je0saly =pur(H" )dsly. . (10)

While not strictly accurate in proximity of the soil layer [Huai et al., 2009], a free shear condition has
proved successful in describing the mean velocity profile in most of the canopy layer [e.g. Ghisalberti
and Nepf, 2004; White and Nepf, 2007; Poggi et al., 2009]. A more accurate evaluation of shear stress

at the bed can be implemented considering a three layer approach [e.g., Huai et al., 2009]. Since
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experimental data suggest smoothness of the mean velocity profile at the interface, we set the
effective viscosity equal to the turbulent viscosity at the interface between free and filtration flows,
i.e., e:=pr(H") in (9) [Katul et al., 2011; Papke and Battiato, 2013]. Equation (9), which accounts for
the viscous and turbulent stresses, the canopy drag and the gravity potential (first, second and third
term, respectively), is equivalent to a double-averaged streamwise momentum equation [Nepf, 2012,
equation (2)], where unsteady and dispersive stress effects have been neglected, as justified by the
findings of Poggi et al. [2004]. Yet, unlike other models [Nepf, 2012, and references therein], where
the canopy drag is generally parametrized through a (unknown) drag coefficient, we model the for-
mer as a Darcy-type resistance and indirectly account for the turbulence at the canopy scale by
including pe (:=p7) in the canopy drag term. The first term in (9), where an eddy viscosity closure
assumption is employed, is consistent with former formulations of the total stresses [e.g., Hsieh and
Shiu, 2006; Nepf, 2012]. We emphasize that, despite . is assumed constant, the viscous term
becomes negligibly small “deeply” inside the canopies, i.e., 2 ~ (0,vK), due to the singular nature of
Darcy-Brinkman equation in the low-permeability limit.

Choosing the height of the canopies, H, the effective viscosity 1, and the velocity scale g=pgSoH?/, as
repeating variables, (9) can be cast in dimensionless form

dpu—7%u+1=0, z€(0,1), (1)

subject to 7(0)=0,u(17)=U, and d,u|,- =3, where z=2H" ' u=0q ™', 6=LH~",U=Uq ", 2*=H?K~". The
analytical solution of (11) for the mean velocity profile u(z) inside the vegetated layer z € [0, 1] is

u(z)=,"2+C(e%+e ), (12a)

1
C=§5/1_1csch), (12b)

The interfacial velocity, U : =u(1), and the velocity deep inside the canopy (or Darcy velocity), Ug : =u(0),
are given by

U=2"%+62""coth/, (13)

Ug=/7"2+64""escha, (14)
respectively. We emphasize that (13) (or (14)) provides an operational way of estimating the canopy layer
permeability, 4, based on measurements of interfacial (or Darcy) velocity only, once the geometrical features

of the channel (S, and L) and the height of the canopy layer (H) are determined. Above the canopy layer,
the dimensionless log law holds:

u(z)=U+dlnz, ze (1,1+9). (15)
since u, : =0,/q=x0 from the definition of g.

The dimensionless shear stress 7 : =tH/(u,q)=d,u can be readily determined from (12)-(15) as

1(2)=iC(e”—e7), z€(0,17), (163)
1(2)=6z"", zec (17,1+9). (16b)

Figure 2 plots u(z) and 7(z) for different values of 1 > 1. As permeability decreases (or 4 increases), the flow
profile inside the obstruction becomes progressively more uniform and the shear stress decreases quickly
to zero within the porous layer.

In the following, we provide analytical expressions for a number of relevant quantities, generally employed
to characterize flows in vegetated channels, e.g., volumetric discharge, penetration length, drag length
scale, canopy shear layer parameter, and the friction factor.

2.2. Analytical Expressions

The closed-form expressions (12) and (15) allow one to analytically determine various quantities, relevant in
describing vegetated flows, with no need of additional parametrization. All such quantities can be uniquely
determined from the channel geometrical features, once the canopy layer permeability has been estimated
(from, e.g., velocity measurements).
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3 2.2.1. Discharge, Bulk Velocity and
3 Friction Factor
25 The volumetric discharge Q [L3T™"]
2 51 i through a vegetated channel of width W
’ 2 [L] can be estimated from integration of
015 the properly rescaled mean velocity pro-
files within and above the canopy layer
2f 1p= “fm A (12) and (15), respectively. The dimension-
= 19 N n . .
05 15 less volumetric dlschargt::- per unit width
Qw : =Q/W, where Q=Qq 'H 2 and
x1.5F GO E W=W/H are the dimensionless volumetric
flow rate and channel width, respectively,
is given by Qu= [ [2 2 +C(e” +e~*)]dz
1t ] +J'11+'S(U+ olnz)dz. Integration yields to
0 Qu=/"24+Ci7"(e"—e %) .
0.5} = | +6[(140)In (1+8)+U—4). a7
We emphasize that Q,, can be determined
solely from canopy attributes, i.e.,  and A.
0 — The bulk velocity Uy, can be readily calcu-
10 lated as
~  qQu
Up= 155" (18)

Figure 2. Dimensionless mean velocity u(z) and shear stress t(z) (inset)
within and above the canopy layer for different values of the dimensionless The friction factor fis defined as
permeability /.
T(H
f:=8 (—2) : (19)

pUs
(i.e., f:=4Cs, where C¢is the skin friction coefficient). From (5) and (6), %(H):paf. Then, (19) can be rear-
ranged to recover the classical Darcy-Weisbach formula:

u 8

R (20)

Up VIF

2.2.2, Penetration Length

The depth, below the canopy surface, where the stress reaches a fixed (however arbitrary) value of the max-
imum stress, tmax=1(H), is referred to as penetration length Je. Generally this percentage is fixed at 10% of
Tmax [Nepf and Vivoni, 2000; Murphy et al., 2007; Ghisalberti, 2009]. In dimensionless form,

de:  1(1—0¢)=0.107(1) (21)
where 6e:=5e/H. Combining (21) with (16a) leads to

d.=1—72""asinh(0.1sinh 2). (22)

2.2.3. Drag Length Scale and Canopy Shear Layer
Another relevant parameter is Cpa, the product between the medium drag coefficient, Cp, and the frontal area
of the canopies per unit volume, g, referred to as the inverse of the drag length scale ([Coal=L""). It is defined as
2|F
Cpa= ‘A 2| , (23)
pU.

where F is the drag force per unit volume of porous medium, and U, is a characteristic flow velocity, which
we set equal to U [Papke and Battiato, 2013]. Since I:'(1 )= —,ueU/K at the interface of a Brinkman medium
and 7/t=u,q/H from the definition of dimensionless stress, (23) can be rewritten as
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2
222 U (i,
As (1)=¢ and u,=«9, (24) becomes
128,
CDa— HU ()\.K) 5 (25)

which provides a closed-form expression for Cpa in terms of geometric features of the channel and the
interfacial velocity. The canopy shear layer, CSL, is defined in terms of Cpa as

V)
CSL:=Cpa———. (26)
d§U|H
Nepf et al. [2007] showed experimentally that the CSL is statistically independent of the canopy Reynolds’
number Rey,:=HU /v for Re,, € (10%,10°), and its value approximately equal to 0.23 +0.06. In particular, they
proposed, and experimentally supported, the scaling law [Nepf et al., 2007, equation (5)],

de _ CsL

Oe  OOL 27
H CDGH @7)

In the following, we verify that the proposed model is consistent with the experimental observation by Nepf
et al. [2007] and with the scaling law (27). Multiplying both sides of (24) by U/(d;|,,), yields to

CSL=2(/x)?, (28)

since d,ul;=1(1)=0 and u,=k0. Consistently with data, CSL is independent of Reynolds number. Yet,
according to the proposed model, CSL is not a constant among canopy flows characterized by different
obstruction permeabilities. For canopy layers of low permeability (i.e. 2 — o), the dimensionless penetra-
tion length J, scales as

Se ~ 2" 'IN10 (29)
since (1) ~ d and 7(1—3,) ~ de~%*. The asymptotic behavior of CpaH for thin vegetated layers,
A:=20>1,is

CpaH ~ 22312, (30)
since U ~ d/A when A > 1, i.e. it is independent of 6. The asymptotic behavior of CSL, . and CpaH given
by (28), (29), and (30), respectively, suggests that

CSL
— ~ const, (€2))]
CDaée

i.e. the ratio is invariant for thin vegetated layers in the low-permeability limit. This is consistent with (27). In
the following, we validate our theoretical predictions against experimental data published elsewhere.

3. Comparison With Experimental Data

We compare our model predictions with the data set collected by Ghisalberti and Nepf [2004] and Nepf et al.
[20071].

Unlike other models, the proposed approach allows one to fully determine the flow response once H, L,
Sor and K are known. Current analytical and semianalytical models contain many additional fitting param-
eters. For example, concurrent measurements of Cp, a, H, L, So, and a momentum absorption coefficient,
., are often required [Katul et al., 2011]. The latter can be determined using empirical relationship which
contains additional fitting parameters, [Katul et al., 2011, equation (19)]. Alternatively, estimates of the
mixing length J. and other constants [e.g. Huai et al., 2009, equation (1)] are necessary beyond Cp, a, H, L,
and S, values. Other models necessitate of both the zero-plane displacement and the momentum rough-
ness height, or employ empirical relationships for parameter estimation [Nepf et al., 2007]. More parsimo-
nious models, which provide estimates of overflow and in-patch depth-averaged velocities, have been
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Table 1. Model Parameters

Run A B C D E F G H | J K

o] 2.36 2.36 2.36 2.36 238 2.38 2.38 238 2.38 2.38 238
Al 1.60 1.60 1.76 1.76 1.63 1.63 1.63 1.90 1.90 1.90 1.90
Al 3.78 3.78 4.14 4.14 3.89 3.89 3.89 4.52 4.52 4.52 4.52

proposed [e.g., Huthoff et al., 2007; Yang and Choi, 2010; Konings et al., 2012; Luhar and Nepf, 2013]. They
generally require a smaller set of fitting parameters, yet they do not provide a vertical distribution of the
mean velocity.

Since permeability is a function of the geometrical properties of the array, we assume that model canopies
with the same value of a possess the same K (or ). Therefore, we group the available measurements into
four classes of equivalent porous media corresponding to the four values of a, a={0.025,0.034,0.040,0.080}.

For each class of porous medium, we calculate K (or 1) from a single measurement of the interfacial velocity
in one particular run through (13). Specifically, we employ runs A, C, E, and H to calculate the permeability
for each geometrical configuration. The calculated values are Ky=7.53 - 1073m?(1a=1.60),Kc=6.26 - 103
m2(Ac=1.76),Ke=7.16 - 1073m?(4g=1.63) and Ky=5.27 - 103m? (13 =1.90) for runs A, C, E, and H, respec-
tively. After calculating permeability, we perform a parameter-free prediction on available quantities
(e.g. U, Uy, and Q) for the same and remaining runs. A list of dimensional and dimensionless model
parameters, including the fitted values of K (or 1), is provided in Table 1. We emphasize that there are a
number of alternative options to estimate permeability K (or ). These include (i) drag coefficient meas-
urements or estimates (e.g., Cp = 1) which can be linked to A through (25) or (30); (ii) velocity measure-
ments at arbitrary locations in the flow field, e.g., the velocity deep inside the canopy or any velocity
measurements in the surface layer; (iii) prediction from geometric information of the canopy layer, i.e.
porosity ¢ and stem density a (obtained from remote sensing or lidar data) through either (semi-)empir-
ical, analytical, or numerical models [e.g., Sobera and Kleijn, 2006; Mattis et al., 2012, and references
therein].

Figure 3a shows a comparison between the measured interfacial velocity U and the model prediction pro-
vided by (13) for runs B, D, F, G, |, J, and K. We emphasize that, for the previous runs, the prediction is
parameter free. Similarly, Figure 3b presents a comparison between the velocity deep inside the canopy
(or Darcy velocity) as predicted by the model and the measured values for all the runs. Figure 3c compares
the experimentally determined volumetric discharge Q and its prediction through (17) for each run. The
predicted values are generally in good agreement with the experimental data. The discrepancy between
the predicted and measured volumetric flow rate for low values of discharge is to be expected. The log
law employed to compute Q is not valid in proximity of the surface where a free shear condition should

0.06 - 0.04 > 7
(a) K . |(b) % _. |0 b
— , — Y — -2 s
| " s 0.03 / ' 10 ®
n ’ X7 o)
£ 004 o E 7 il :qé/b
B , = 0.02 / B K
< Q s
g 0 02 Ve /ﬁ* §- O O] & g ¢ ‘
<b /@/ (S . )@/A <® / V) W
ok 0 107k
0 002 004 006 0 0.02 0.04 107 107
U [ms™}] Ug [ms™] O [mds]

Figure 3. Comparison between measured and predicted (a) interfacial velocity U, (b) velocity deep inside the canopies Uyq, and (c) volumetric discharge Q for runs A (square), B (dia-

mond), C (right-pointing triangle), D (left-pointing triangle), E (star), F (black square), G (asterisk), H (cross), | (circle), J (triangle), and K (inverted triangle). Figure 3a does not include the
runs used for fitting, i.e. runs A, C, E, and H. The line 1:1 is showed.
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Figure 4. (a) Comparison between experimental velocity measurements (points) and
model predictions (solid lines) for runs H, I, and J. The permeability value K (or 2) for
the three configurations is obtained through a one-point fitting of the interfacial
velocity U for run H by means of (13). The fitted value of 2 (~ 1.90) is then employed
to perform a pure prediction on the remaining data set. The inset shows a plot of u(z)
(solid line) and the appropriately rescaled data. It supports the model assumption
that canopy layers with the same stem density, as for runs H, |, and J, have the same
permeability. (b) Rescaled data (according (32)) for velocity profiles B, C, H, I, J, and
PD5 [Katul et al., 2011], corresponding to canopy layers with different permeabilities.
The main figure shows that the asymptotic limit for . — oo (dashed line) is not fully
reached, since /. =~ 2 (solid line) for the data set considered here. The nonrescaled
data corresponding to runs B, C, and PD5 and the model predictions (solid lines) are
presented in the inset.

be satisfied; this leads to overesti-
mate the velocity profile close to the
free surface, and consequently the
total discharge. This effect becomes
more noticeable for low values of dis-
charge, where such overestimate
constitutes a higher percentage of
the total discharge.

The CSL parameter can be promptly
estimated through (28). The analyti-
cal predictions of CSL corresponding
to the minimum and maximum
values of 1 among all the runs are
CSL ~ 0.19 and CSL = 0.26 for 1=1.6
and 2=1.9, respectively. These
results are in excellent agreement
with the experimental mean value of
0.23 and a standard deviation
between all measurements of 0.06
[Nepf et al., 2007, Figure 2]. Our theo-
retical result suggests that the scatter
between the different sets of data
may be attributed to different values
of permeabilities between the can-
opy layers. The analytical solution
well compares with the experimental
data.

Given the obstruction permeability
and the geometric features of the
channel, the mean velocity profile is
uniquely determined by (12)-(15).
Figure 4a compares the experimen-
tal measurements and the simulated
dimensional mean velocity profiles
for runs H, |, and J. We emphasize
that the analytical predictions for
runs | and J are parameter free. The
results indicate the model is able to
successfully reproduce the velocity
profile except in proximity of the

free interface where the log law is invalid. The inset in Figure 4a, which plots the dimensionless velocity
profile (12a) and the correspondingly rescaled data, supports the hypothesis that arrays with equal stem
density a possess the same permeability and exhibit a similar dynamical response, if appropriately

rescaled.

For canopy layers of different permeabilities, we seek dynamic similarity by investigating the asymptotic
behavior of (12) in the low-permeability limit, i.e. L — +oo [Battiato, 2012; Papke and Battiato, 2013]. Since

C ~ ) e * we can define

x /9.9y 9-2
g2 YO/ )=

32
/0 (32)
whose asymptotic behavior u* ~ e is independent of /, where y*=/(z—1) and y* € (—4,0). Figure 4b
plots rescaled data (according (32)) for velocity profiles B, C, H, |, J, and PD5 [Katul et al., 2011]. As A ~ 2
(solid line) for the data set considered here, the asymptotic limit for L — oo (dashed line) is not fully
BATTIATO AND RUBOL ©2014. American Geophysical Union. All Rights Reserved. 8
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reached, as apparent from the A-
dependent tails deviating from (32).
The nonrescaled data for runs B, C,
and PD5 and the model predictions
(solid lines) are presented in the inset
of Figure 4b.

It is worth noticing that (15) and (32)
suggest that two different velocity
scalings exist in the surface and can-
opy layers, respectively. In particular,
(15) gives

a—0
ul= ua =k "Inz (33)
T

with z=2 /H, i.e. u}, is a universal func-
tion in the surface layer, z> 1. In the
canopy layer, combining (29) with (32),
while accounting for U—Uy ~ 45"

(as 1 — +00), yields to the following

scaling
u—U .
u:[.—':’ 4 e, ] - +oo
U—Uqg
(34a)
z—H
z, = 5 (34b)

with c=In 10, i.e. In (u,) is linearly
proportional to z,. The previous scal-
ings are similar to those proposed by,
Figure 5. (a) Rescaled velocity data u,:=(—U) /. versus z=2 /H for runs B, C, H, |, e.g., Katul et al. [2011, equation (14)].
e S e s pdlon 30 Alhough dertved under te ssup-
'(Ifrcl)eI rescalézd data follow the t:\yeoreticaclgcaling u;j ~ exp(c;g), with ccg 3.7 (solid Ii;'e), tion of free-shear at the channel bed,
yet they deviate from the theoretical prediction u?, ~ exp (In10z;,) valid in the limit /. the universal scaling (34) is independ-
;;;C (dashed line). This is to be expected since all the runs are characterized by ent from the specific boundary condi-

tion imposed at the bed surface

[Battiato, 2012]. The scaling laws (33)
and (34) demonstrate that appropriately rescaled quantities become independent of / (or permeability), as
A — +oo (or permeability is sufficiently small). This has two direct implications. First, it shows that the space
dimension of independent (dimensionless) parameters that fully describe the system dynamics can be
reduced from two (6 and 1) to one (¢ only). Second, it suggests that appropriately rescaled flow quantities
become approximately independent of 2 when the former is large enough, i.e. the system response is not
strongly sensitive to A estimates (and/or measuring errors) when permeability is small. In this sense, 4
appears as a robust parameter for modeling vegetated flows. Yet, for vegetated conditions where 1 is not
much larger than one, deviations from (34) may occur. In Figure 5a, we plot the experimental data rescaled
according to (33). The data in the surface layer collapse onto the theoretical prediction. In Figure 5b, we
rescale the velocity data according to (34). In a semilogarithmic plot, the rescaled velocity data In (u7,) are
indeed linearly dependent with the rescaled coordinate system z7,, with ¢ ~ 3.7. Deviations from the theo-
retical prediction in the limit as 2 — oo are to be expected since 1 = 2 for the data set considered.

The ability to estimate canopy layer permeability based solely on geometrical features of the stem arrange-
ment would allow one to predict flow response from geometric information of vegetation acquired, e.g.,
from remote sensing devises. There are multiple formulas to independently estimate permeability of a
porous medium from its geometric features [Sobera and Kleijn, 2006, and references therein]. Yet, they are
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10° , , , , generally empirical formulas and
contain a number of fitting parame-
102 b ] ters. As such, their applicability is
limited to the physical conditions
F 10 under which they have been
z derived and they are less accurate
ER L than the use of actual velocity data.
Gy T 7 Much fewer semianalytical approxi-
?; ° ® mate formulations are available,
< 0™ except for highly idealized systems.
Here, we compare the permeability
107} E values as obtained by one-point fit-
ting of velocity data with the analy-
10° . . . . sis proposed by [Happel, 1959],
0 2 4 6 8 10 . . . .
o [m] which describes the laminar viscous
flow through a regular array of infi-
Figure 6. Ratio between the fitted and predicted permeability values for the experi- nite cylinders of radius Ry and half-

mental canopy configurations corresponding to a = {2.5, 3.4, 4, 8} m™ '. Equation (35)
is able to capture the correct order of magnitude of the canopy layer permeability .
solely from geometric information of the canopy structure, i.e. porosity ¢ and canopy aligned orthogonally to the mean

density a. flow direction. The permeability of
such an array is given as [Happel,
1959, equation (19)]

distance between cylinders R,

K=R3f(¢) (35a)

where
(35b)

and ¢=1—R2/R? is the forest porosity. Assuming the stems are arranged in regular arrays, then R; can be
approximated as Ry =1/(2a), where a=2nRy and n is the canopy stem density (i.e. number of stems per
unit area). While for the experimental runs used in this study, the mean leaf area index (LAI) is not provided,
the latter can be related to a through, e.g., LAl ~ aH [Katul et al., 2011]. For the four configurations corre-
sponding to values of a = {2.5, 3.4, 4, 8 m™ ', we plot the ratio between the fitted and predicted permeabil-
ity value (see Figure 6). Despite permeability values can span up to 20 orders of magnitude depending on
the system under consideration (from 10~ '°m? in “impervious” rocks to 10~ °m? for highly permeable
layers), Figure 6 shows that (35) can predict the correct order of magnitude of the canopy permeability
without any fitting parameter, given the canopy density a (or LAI) and the canopy layer porosity ¢ are pro-
vided. The discrepancy between the predicted and fitted permeability values is to be expected due to devi-
ations of the experiment from the model approximations and/or highly idealized conditions, which include,
e.g., flow steadiness and one-dimensionality, and regular arrangement of stems. Yet, the approach shows
promise in its ability to directly link canopy geometry (obtained, e.g., from lidar data) to flow response.
Development of more accurate relationships between geometrical features and canopy permeability, to
include, e.g. finite height and bending effects in (35), is subject of current research.

4, Conclusions

Turbulent flows above submerged vegetation are ubiquitous in natural systems and their accurate model-
ling is crucial in determining nutrients dynamics and the hydrodynamic response of wetlands and vege-
tated channels. We propose a single fitting-parameter model to describe turbulent flow in a densely
vegetated open channel. The model couples the Darcy-Brinkman equation with the log law for the flow
within and above the canopy layer, and employs a first-order closure scheme of the Reynolds equation to
provide a self-consistent estimate of the turbulent viscosity at the interface between the canopy and free
flow. Further, we model the drag force as a Darcy-type resistance with a modified effective viscosity which
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accounts for turbulence at the canopy scale, without relying on a more common parametrization through a
(unknown) drag coefficient. The model, amenable of analytical solution for the mean velocity, allows one to
determine closed-form expressions for a number of relevant physical quantities, including volumetric dis-
charge, bulk velocity, penetration length, drag length scale, and canopy shear layer parameter (CSL), with-
out relying on additional parametrization. The model results show that the parameters governing the
dynamical response of appropriately dimensionless quantities are purely geometric, i.e. a dimensionless can-
opy layer permeability 4 and height . This information can directly guide the design of laboratory-scale mod-
els which are dynamically similar to their corresponding prototypes in natural environments (i.e., at the field-
scale). According to the proposed model, dynamic similarity is achieved when 1 and ¢ are kept constant
between the model and the prototype. The model suggests that appropriately rescaled velocities in the can-
opy and surface layers exhibit different scalings laws. The scaling laws show that the space of dimensionless
parameters can be further reduced when permeability is very small, i.e. 1 — +o0, and the dynamical response
of vegetated layers becomes universal. It is worth noticing that the proposed approach, consistent by con-
struction with the framework proposed by Papke and Battiato [2013], satisfies also the universal scaling laws
experimentally observed by Ghisalberti [2009], under appropriate conditions. The model predictions and the
proposed scalings compare well with experimental data collected by Ghisalberti and Nepf [2004], Poggi et al.
[2004] and Nepf et al. [2007].

While the proposed framework is applicable to rigid and moderately flexible canopies, generalizations to
more realistic configurations, e.g. highly flexible and heterogeneous (i.e. with spatially variable permeability)
canopy layers, necessitate the coupling of canopy bending and flow field dynamics. This is subject of cur-
rent investigations together with the application of the proposed model to transport of passive and reactive
solutes in vegetated aquatic flows.
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