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systems include transport in fractured rocks and flows over sediment beds (Nikora
et al. 2001; Goharzadeh, Khalili & Jørgensen 2005; Battiato & Vollmer 2012; Liu
et al. 2013), coral reefs and canopies (Nepf et al. 2007; Ghisalberti 2009; Papke
& Battiato 2013; Battiato & Rubol 2014), nutrient uptake from roots (Marschner &
Dell 1994; Gilroy & Jones 2000) and passive predatory strategies in some carnivorous
plants (Lloyd et al. 1942; Goharzadeh et al. 2005; Scholz et al. 2010). Coupled flows
are critical to many engineering applications including superhydrophobic (Ou, Perot
& Rothstein 2004; Rothstein 2010; Battiato 2014) and slippery liquid-infused porous
surfaces (Cui et al. 2015; Hou et al. 2015), shear sensors, flows in blood vessels
(Weinbaum et al. 2003; Al-Chidiac et al. 2009) and above carbon nanotube forests
(Deck et al. 2009; Battiato, Bandaru & Tartakovsky 2010; Battiato 2012), just to
mention a few. Distinctive characteristics of microstructured surfaces and nanoimprints
are routinely adopted in a variety of other manufacturing processes including, but
not limited to, ultrafiltration of colloids (Maruf et al. 2013b) and nutrient delivery
in bioreactor devices (Griffiths, Howell & Shipley 2013; Gruenberger et al. 2013).
Channel transverse mixing is critical to, e.g., reduce membrane fouling or increase
the overall reactivity of a system. This is particularly challenging in microfluidic
devices where mixing is controlled by diffusion, with resulting slow reaction rates.
Surface patterns have been successfully employed to enhance transverse mixing
in microchannels (Stroock et al. 2002; Stroock & Whitesides 2003) and reduce
membrane fouling (Weinman & Husson 2016). Yet, a clear connection between the
properties of the surface and its macroscopic response still remains an open question
(Bouquet & Lauga 2011). Notwithstanding significant theoretical advancements,
attempts to relate surface properties to macroscopic quantities, such as the dispersion
coefficient and average velocity, remain mostly phenomenological (e.g. Li, Reinhoudt
& Crego-Calama 2007; Ybert et al. 2007; Maruf et al. 2013a; Hou et al. 2015), and
analytical expressions are available only for tractable geometries (e.g. Lauga & Stone
2003; Davis & Lauga 2010).

Here, we consider non-reactive tracer transport through a symmetric (micro-)channel
embedded in a permeable porous matrix, and characterize the latter by its permeability
and porosity. In this work, we are concerned with analytically relating the macroscopic
response of the coupled channel–matrix system, i.e. the longitudinal dispersion
coefficient, with the porous layer porosity and permeability and the channel transport
regimes. We assume that the flow and transport are governed by the combination of
Stokes, Brinkman and advection–diffusion equations subject to appropriate initial and
boundary conditions. This formulation, relevant for the study and control of transverse
mixing in microchannels, is especially suitable for the modelling of Navier–Stokes
flows (both laminar and turbulent) above patterned surfaces, e.g. micro-riblets (Battiato
2014) and carbon nanotube forests (Battiato et al. 2010; Battiato 2012), where the
idealization of the pattern as a porous layer has been shown to be appropriate.

Two approaches are routinely employed to relate channel and matrix properties
to dispersion in a coupled channel–matrix system: (i) analytical and semianalytical
solutions of a system of coupled advection–diffusion equations (ADEs) and (ii)
upscaling perturbative methods. While exact, analytical solutions of a system of ADEs
can often be obtained only under restrictive simplifying assumptions. The greatest
technical difficulty in (semi)analytically solving advection–diffusion equations is in
accounting for the non-uniformity of the velocity profile in the channel and/or matrix.
This complication is generally overcome, or better avoided, by assuming uniform
velocity in the channel, purely diffusive transport in the matrix or both. The first
analytical treatment of transport mechanisms in channel–matrix systems is generally
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attributed to Tang, Frind & Sudicky (1981), who considered a one-dimensional thin
channel embedded in an impermeable (to flow) porous matrix. Their result was later
extended by Sudicky & Frind (1982) to account for the presence of neighbouring
parallel channels. A detailed review of this approach is provided by Bodin, Delay &
De Marsily (2003). More recently, Roubinet, Dreuzy & Tartakovsky (2012) solved
semi-analytically the transport problem for a uniform flow in a two-dimensional
channel embedded in an impermeable two-dimensional infinite matrix, where mass
transport was purely diffusive.

Alternative approaches to connect macroscale transport properties to surface
properties are upscaling methods, such as homogenization (Hornung 1997; Boso
& Battiato 2013), volume averaging (Whitaker 1999), thermodynamically constrained
averaging (Gray & Miller 2005), stochastic homogenization, the method of moments
(Brenner 1987), etc. These approaches involve perturbative methods in various
forms (single- and multiple-scale expansions, Reynolds-type decomposition, etc.),
which allow rigorous derivation of the macroscale equations satisfied by spatially
averaged microscale (pore-scale) quantities. The connection between the micro- and
the macroscale is formally established through effective parameters (e.g. dispersion
coefficient, effective contact angle, macroscopic reaction rates, slip velocity), which
depend on the specific structure of the coupled channel–matrix system. Unlike
(semi)analytical solutions, these methods allow one to relax many of the assumptions
concerning the shape of the velocity profile in the channel–matrix system. This is
achieved at the cost of obtaining an asymptotic approximation of the full microscopic
solution, generally truncated at the first or second order. In this work, we focus on
perturbative approaches, since our main objective is to explicitly account for steady
non-uniform flow conditions and the impact of matrix permeability on dispersion.

Since the problem of transport in a channel (with or without porous walls) has
been historically handled in the context of homogenization theory, we limit our
attention to the results obtained with this specific technique. We emphasize that
equivalent results have been achieved with other upscaling methods. The seminal
result on the upscaling of passive tracer transport in a channel with planar walls is
generally attributed to the works by Taylor (1953) and Aris (1956), who, by means of
perturbation methods, derived the well-known Aris–Taylor formula for the dispersion
coefficient. More recently, Mikelic, Devigne & Duijn (2006) studied transport in a
two-dimensional channel with reactive walls. The leading-order solution was found
by asymptotic homogenization and the two-dimensional solution obtained in terms of
the leading-order solution and its first derivative. Recently, Dejam, Hassanzadeh &
Chen (2014) coupled a two-dimensional ADE for the channel with a one-dimensional
diffusion equation for the matrix. They considered a parabolic flow profile in the
channel, and applied Reynolds decomposition to obtain an upscaled equation for the
average concentration. By means of Laplace transform and numerical inverse Laplace
transform, they studied transport dynamics for different Péclet numbers. Griffiths
et al. (2013) considered transport in a cylindrical tube with a thin porous wall. In a
two-domain approach, they coupled Stokes and Darcy flow by means of the Beavers
and Joseph condition for the effective slip at the free-fluid–porous-medium interface
(Beavers & Joseph 1967). Asymptotic analysis was used to derive the corresponding
macroscopic equation and effective dispersion coefficient.

Here, we model a coupled system composed of a planar channel embedded in a
porous matrix of prescribed porosity and permeability, and establish an analytical
relationship between the effective transport properties of the system, i.e. macroscopic
dispersion coefficient, those of the porous matrix, i.e. porosity and permeability, and



16 B. Ling, A. M. Tartakovsky and I. Battiato

H

2b

Channel

Matrix

Matrix

FIGURE 1. Problem domain.

different transport regimes identified by the Péclet number. We also investigate the
scaling behaviour of the normalized dispersion in various limits and for thin and
thick porous matrices.

The paper is organized as follows. In § 2 we provide the model formulation for
flow and transport in a two-dimensional coupled channel–matrix system, in § 3 we
present the upscaled (macroscopic) equations and in § 4 we provide an analytical
relationship between the dispersion coefficient and the matrix properties. In § 4 we
study the scaling behaviour of the dispersion coefficient and its threshold values
in different limits. In § 5 we perform numerical simulations to test the upscaled
model accuracy against two-dimensional simulations. Further, we perform a detailed
comparison between the upscaled model derived here and that of Dejam et al. (2014),
and highlight the range of applicability of each. Concluding remarks are given in § 6.

2. Model formulation

We consider tracer transport in a single-phase fully developed pressure-driven
laminar flow in a semi-infinitely long (micro-)channel embedded in a porous
matrix with permeability k and porosity φ (figure 1). While the Carman–Kozeny
equation establishes a unique relationship between porosity and permeability, it is
unable to describe permeability dependences over a broad range of porous medium
configurations (Valdes-Parada, Ochoa-Tapia & Alvarez-Ramirez 2009). Without loss
of generality, we consider porosity and permeability as independent variables in
order to account for the unknown relationship between k and the microstructure
arrangement. The boundaries between the channel and the matrix walls are located at
ỹ = 0 and ỹ = 2b. The porous matrix width (thickness) is H, i.e. the matrix occupies
the domains ỹ ∈ (2b, 2b + H) and ỹ ∈ (−H, 0). A dilute Newtonian solution with
density ρ and solute concentration c0 is injected at the domain inlet x̃ = 0. Flow
and transport occur both in the channel and in the matrix, and are affected by the
momentum and mass transfer across the channel–matrix interfaces.

We denote the concentration and the x̃-component of the velocity in the channel and
the matrix by c̃f , ũf , c̃m and ũm respectively. Due to the symmetry of the domain, we
restrict our analysis to ỹ ∈ (−H, b).
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2.1. Flow equations

Fully developed Stokes flow in the channel–matrix system can be described by
coupling the Stokes equation in the channel with a Darcy–Brinkman equation in the
matrix,

µ
d2ũf

dỹ2
− dp̃

dx̃
= 0, ỹ ∈ (0, b), (2.1a)

µ
d2ũm

dỹ2
− µ

k
ũm − dp̃

dx̃
= 0, ỹ ∈ (−H, 0), (2.1b)

respectively, where ũi(ỹ) with i = {f , m} is the x̃-component of the velocity in
the channel and the matrix, µ is the fluid dynamic viscosity, k [L2] is the matrix
permeability, and dx̃p̃ is a constant pressure gradient driving the flow in the x̃-direction.
Equations (2.1) are subject to no-slip and symmetry boundary conditions at the bottom
solid wall (ỹ = −H) and channel centreline (ỹ = b) respectively, and continuity of
velocity and shear stress conditions at the interface separating the channel and the
porous matrix (ỹ = 0),

ũm|ỹ=−H = 0,
dũf

dỹ

∣

∣

∣

∣

ỹ=b

= 0, ũf

∣

∣

ỹ=0
= ũm|ỹ=0 ,

dũf

dỹ

∣

∣

∣

∣

ỹ=0

= dũm

dỹ

∣

∣

∣

∣

ỹ=0

. (2.2a−d)

While many boundary conditions have been proposed to couple free and filtration
flows, see Le Bars & Worster (2006) for a review, continuity of velocity and shear
stress has been proven accurate in a number of applications, e.g. Battiato et al. (2010),
Battiato (2012) and Battiato & Rubol (2014).

We define the following dimensionless quantities:

x = x̃

L
, y = ỹ

b
, p = p̃

p0

, ui =
ũi

U
, with i = {f , m}, (2.3a−d)

where L is a characteristic macroscopic/observation length scale, e.g. the distance far
from the inlet where data are collected, p0 is a characteristic pressure, e.g. the ambient
pressure, and U is the average velocity across the channel. Then, (2.1)–(2.2) can be
cast in dimensionless form,

d2uf

dy2
− Ψ = 0, y ∈ (0, 1), (2.4a)

d2um

dy2
− λ2um − Ψ = 0, y ∈ (−h, 0), (2.4b)

subject to

um|y=−h = 0,
duf

dy

∣

∣

∣

∣

y=1

= 0, uf

∣

∣

y=0
= um|y=0 ,

duf

dy

∣

∣

∣

∣

y=0

= dum

dy

∣

∣

∣

∣

y=0

, (2.5a−d)

where

λ
2 = b2

k
, Ψ = p0b2

µUL

dp

dx
and h = H

b
. (2.6a−c)
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The system (2.4) admits an analytical solution for the velocity profiles in the channel
and the matrix, uf and um respectively,

uf (y) = Ψ

2
y2 + Ay + B, y ∈ [0, 1], (2.7)

um(y) = −Ψ

λ2
+ Eeλy + Fe−λy, y ∈ [−h, 0], (2.8)

where A, B, E and F are integration constants,

A = −Ψ, (2.9a)

B = −Ψ

λ2
(−1 + eΛ)(−1 + eΛ + λ+ λeΛ)(1 + e2Λ)−1, (2.9b)

E = −Ψ

λ2
eΛ(−1 + λeΛ)(1 + e2Λ)−1, (2.9c)

F = −Ψ

λ2
(λ+ eΛ)(1 + e2Λ)−1. (2.9d)

Moreover,
Λ = λh, (2.10)

which represents a characteristic dimensionless length scale, also known as the
penetration length, associated with the thickness of the boundary layer between the
free and filtration flows (Nepf 2012). A classification between thin (Λ � 1) and thick
porous media (Λ� 1) can be introduced based on the magnitude of Λ (Battiato 2012).
The slip velocity, Uslip, can be readily calculated as Uslip := um(y = 0) = uf (y = 0), i.e.

Uslip = −Ψ
h(eΛ − 1)[Λ(eΛ + 1) + h(eΛ − 1)]

Λ2(1 + e2Λ)
. (2.11)

2.2. Transport equations

We consider transport of a passive scalar injected at the channel inlet, i.e. x̃ = 0 and
ỹ ∈ (0, b), with concentration c0 for t̃ > 0. The solute concentrations in the channel c̃f

and the matrix c̃m satisfy a system of coupled advection–dispersion equations,

∂ c̃f

∂ t̃
+ ũf

∂ c̃f

∂ x̃
= D̃f

(

∂2c̃f

∂ x̃2
+ ∂2c̃f

∂ ỹ2

)

, ỹ ∈ (0, b), x̃, t̃ > 0, (2.12a)

∂ c̃m

∂ t̃
+ ũm

∂ c̃m

∂ x̃
= D̃mx

∂2c̃m

∂ x̃2
+ D̃my

∂2c̃m

∂ ỹ2
, ỹ ∈ (−H, 0), x̃, t̃ > 0, (2.12b)

where D̃f is the molecular diffusion coefficient, D̃mx and D̃my are the x̃ and ỹ
components of the dispersion coefficient in the matrix, and ũf = Uuf and ũm = Uum

are defined by (2.7) and (2.8) respectively. Equations (2.12) are subject to initial,

c̃f (x̃, ỹ, t̃ = 0) = 0 and c̃m(x̃, ỹ, t̃ = 0) = 0, (2.13a,b)

and boundary conditions,

c̃f (0, ỹ ∈ [0, b], t̃) = c0, c̃f (∞, ỹ ∈ [0, b], t̃) = 0,
∂ c̃f

∂ ỹ
(x̃, b, t̃) = 0, (2.14a−c)

∂ c̃m

∂ x̃
(0, ỹ ∈ [−H, 0), t̃) = 0, c̃m(∞, ỹ ∈ [−H, 0], t̃) = 0,

∂ c̃m

∂ ỹ
(x̃, −H, t̃) = 0.

(2.15a−c)
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Additionally, on the channel–matrix interface, the continuity of concentration and mass
flux is satisfied,

c̃f (x̃, 0, t̃) = c̃m(x̃, 0, t̃) and
∂ c̃f

∂ ỹ
(x̃, 0, t̃) = φD̃my

D̃f

∂ c̃m

∂ ỹ
(x̃, 0, t̃), (2.16a,b)

where φ is the matrix porosity. We define the following dimensionless quantities:

t = U

L
t̃, Df = D̃f

D?
, Dmi =

D̃mi

D?
, ci =

c̃i

c0

, with i = { f , m}. (2.17a−d)

Here, D? = O(D̃f ) is the order of magnitude of the solute molecular diffusion
coefficient, such that Df = O(1). Since we investigate the dynamics of transport
in a time frame much larger than the diffusion time, τd = b2/D?, and close to the
advection time, τa = L/U, all of the time scales are scaled by τa. Then, (2.12) can
be written in dimensionless form as follows:

εPe
∂cf

∂t
+ εPeuf

∂cf

∂x
= ε2Df

∂2cf

∂x2
+ Df

∂2cf

∂y2
, y ∈ (0, 1), x, t > 0, (2.18a)

εPe
∂cm

∂t
+ εPeum

∂cm

∂x
= ε2Dmx

∂2cm

∂x2
+ Dmy

∂2cm

∂y2
, y ∈ (−h, 0), x, t > 0, (2.18b)

where

ε = b

L
and Pe = τd

τa

= Ub

D?
. (2.19a,b)

Equations (2.18) are subject to

cf (0, y ∈ [0, 1], t) = 1, cf (∞, y ∈ [0, 1], t) = 0,
∂cf

∂y
(x, 1, t) = 0, (2.20a−c)

∂cm

∂x
(0, y ∈ [−h, 0), t)= 0, cm(∞, y ∈ [−h, 0], t)= 0,

∂cm

∂y
(x,−h, t)= 0, (2.21a−c)

cf (x, 0, t) = cm(x, 0, t) and
∂cf

∂y
(x, 0, t) = φDmy

Df

∂cm

∂y
(x, 0, t). (2.22a,b)

In the following section, we employ asymptotic homogenization to relate the
dispersion coefficient in the coupled channel–matrix system with the effective
properties of the matrix.

3. Asymptotic homogenization and upscaled equations

To derive the upscaled transport equations, we apply rescaling and asymptotic
analysis to the ADEs (2.18). We introduce the rescaled longitudinal coordinate ξ and
a coefficient α such that

x := ξ
√

ε and Pe := ε−α. (3.1a,b)

Equations (2.18a) and (2.18b) take the form

εPe

(

∂cf

∂t
+ uf√

ε

∂cf

∂ξ

)

= εDf

∂2cf

∂ξ 2
+ Df

∂2cf

∂y2
, (3.2a)
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εPe

(

∂cm

∂t
+ um√

ε

∂cm

∂ξ

)

= εDmx

∂2cm

∂ξ 2
+ Dmy

∂2cm

∂y2
. (3.2b)

Let us define the cross-sectional averaging operator

〈·〉 = 1

L?

∫ L?

0

dy, (3.3)

where L? = 1 for the channel and L? = −h for the matrix. Moreover, we employ the
ansatz

ci = c
(0)
i (ξ , t) +

√
εc

(1)
i (ξ , y, t) + εc

(2)
i (ξ , y, t) + O(ε

√
ε), i = {f , m}, (3.4)

where c
( j)
i is the jth-order term in the expansion of concentration ci. Substituting (3.4)

in (3.2) while applying the averaging operator (3.3) leads to a system of coupled
upscaled (effective macroscopic) equations (see Appendix)

ε2Pe

(

∂〈cf 〉
∂t

+ 〈uf 〉
∂〈cf 〉
∂x

)

= ε3D?
f

∂2〈cf 〉
∂x2

− φ

[

ε2PeN1
∂〈cm〉
∂x

+ 3Dmy

h
(〈cf 〉 − 〈cm〉)

]

,

(3.5a)

ε2Pe

(

∂〈cm〉
∂t

+ 〈um〉∂〈cm〉
∂x

)

= ε3D?
m

∂2〈cm〉
∂x2

+ 1

φ

[

ε2Pe
M1

h

∂〈cf 〉
∂x

+ 3Df

h
(〈cf 〉 − 〈cm〉)

]

,

(3.5b)

where

M1 = −
(

Ψ

6
+ A

2
+ B

)

and N1 = Ψ h

λ2
− F

λ
(eλh − 1) + E

λ
(e−Λ − 1), (3.6a,b)

subject to

〈cf 〉(x = 0, t) = 1, 〈cf 〉(x = ∞, t) = 0, 〈cf 〉(x, t = 0) = 0, (3.7a−c)

∂〈cm〉
∂x

(x = 0, t) = 0, 〈cm〉(x = ∞, t) = 0, 〈cm〉(x, t = 0) = 0, (3.8a−c)

under the assumption that 〈c(1)
i 〉=〈c(2)

i 〉=0, i={ f ,m}, and provided that the conditions

(1) ε � 1,
(2) Pe < ε−1/2

are met. Condition (1) ensures that geometric scale separation exists and is satisfied
when the channel is long and thin. Condition (2) provides an upper bound on the
Péclet number. To ensure that the higher-order correction terms have zero mean, we
set 〈c(1)

i 〉 = 〈c(2)
i 〉 = 0 (Mikelic et al. 2006).

The advection–dispersion equations (3.5) are coupled through a source term
describing the mass exchange between the matrix and the channel. Unlike existing
works (Reichert & Wanner 1991; Kazezyılmaz-Alhan 2008), which have postulated
the coupling in the form of a storage term only, i.e. (〈cf 〉 − 〈cm〉), our analysis
demonstrates that an additional contribution due to concentration gradients along the
channel, i.e. ∂〈ci〉/∂x, i = {m, f }, must be considered as well. We emphasize that the
flux ∂〈cm〉/∂x is an advective term contributed by the non-zero permeability matrix.
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This is different from Tang et al. (1981), Dejam et al. (2014) or Roubinet et al.

(2012), who only consider diffusive transport in the porous medium.
In (3.5), D?

f and D?
m are the dispersion coefficients for the channel and the matrix

respectively. The channel dispersion coefficient D?
f is defined as

D?
f = Df + Pe2 If

Df

, (3.9)

or, equivalently and without loss of generality,

D?
f = 1 + Pe2If , (3.10)

if D? ≡ D̃f and Df ≡ 1 in (3.2) and (3.9) respectively. In the following, we will use the
second expression (3.10) (i.e. Df ≡ 1), as it allows a direct comparison with formulae
derived by other authors (Horne & Rodriguez 1983; Griffiths et al. 2013; Dejam et al.

2014). In (3.10), If = (3/560)Ψ 2 + (1/40)AΨ + (7/360)BΨ + (7/240)A2 + (1/24)AB,
i.e.

If = Ψ 2

105
[1 + g(λ, Λ)], (3.11)

where

g(λ, Λ) = 7

3

(eΛ − 1)[eΛ − 1 + λ(1 + eΛ)]
λ2(1 + e2Λ)

, (3.12)

or, equivalently,

g(λ, Λ) = 7

3λ

[

tanhΛ + 1

λ
(1 − sechΛ)

]

. (3.13)

Moreover, from (2.11) it is immediate to show that

Uslip

Ψ
= −3

7
g(λ, Λ), (3.14)

i.e. the normalized interfacial velocity −Uslip/Ψ is solely controlled by the porous
matrix properties.

We emphasize that D?
f explicitly depends on λ (inverse of the dimensionless

permeability) through If . The matrix dispersion coefficient is

D?
m = Dmx − Pe2 Im

Dmy

, (3.15)

where

Im = 1

h

∫ 0

−h

um(y)N(y) dy (3.16)

and

N(y) =
∫ y

0

dy′
∫ y′

0

um(y?) dy?, 0 < y? < y′, 0 < y′ < y. (3.17)

The derivation details are presented in the Appendix.



22 B. Ling, A. M. Tartakovsky and I. Battiato

10–1

100

101

102

10010–110–2 104103102101

Pe

Diffusive
regime

Transition
Advective

regime

FIGURE 2. (Colour online) Normalized dispersion coefficients κf (solid red lines) and κd

(dashed back line) versus Pe for different values of λ and Λ. Here, Ψ =−0.78 and h = 10.

4. Dispersion coefficient and matrix properties

In order to investigate the impact of the matrix effective properties, h and λ, on
macroscale transport in the channel, we compare D?

f in (3.10) with the dispersion
coefficient Dd obtained by Dejam et al. (2014) for a coupled system with purely
diffusive transport in the matrix (i.e. λ→ ∞ or k → 0, and h 6= 0). To isolate the
effect of the width of the porous medium and its permeability, h and λ, on channel
macroscopic transport, we normalize both coefficients by the Aris–Taylor dispersion
coefficient DAT for a single channel (i.e. λ→ ∞ or k → 0, and h = 0) and define

κf :=
D?

f

DAT

and κd := Dd

DAT

, (4.1a,b)

where (Horne & Rodriguez 1983; Dejam et al. 2014)

Dd = 1 + 1

175
Pe2 and DAT = 1 + 2

105
Pe2. (4.2a,b)

In figure 2, we plot κf and κd as a function of Pe and λ, for a fixed h. The figure
shows that two thresholds exist, such that κf is constant for Pe < Pemin and Pe > Pe?.
For small Péclet number (Pe < Pemin ≈ 1), κf → κd, i.e. the dispersion coefficient for
the coupled system with permeable matrix (finite λ) converges to its non-permeable
matrix limit (λ→ ∞, h 6= 0) independent of h and λ. When Pe < 1, advective mixing
both in the matrix and in the channel is negligible relative to diffusive mixing. As a
result, κf → κd and κd → 1. In the intermediate range of Péclet numbers (1 < Pe < Pe?),
κf changes from κf = 1 to κf = κf (λ, h) when Pe > Pe?. It is worth noticing that the
dispersion coefficient can overcome its purely diffusive limit when λ< 1, i.e. mixing
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is enhanced compared with a channel of half-width b. When 1 < Pe < Pe?, κf is a
function of Pe, h and λ. Therefore, the matrix properties (or λ and h) and boundary
conditions (or Pe) can be independently modified to achieve the desired dispersion
coefficient.

As mentioned above, for large Péclet number (Pe > Pe?), κf reaches a Pe-
independent asymptotic value κλ,h, i.e. limPe→∞ κf = κλ,h. In this regime, for any
given Pe, the dispersion coefficient increases with decreasing λ (figure 2). This
phenomenon is attributed to a decreasing mass flux at the interface between the
channel and the matrix, and a resulting decreasing mass loss towards the matrix.
Such mass loss is smaller compared with the zero-permeability case, where no solute
is transported from the upper steam by the flow in the matrix. This is a newly
identified mechanism regulating mass exchange between the channel and the matrix,
which is purely controlled by the matrix properties (λ and h) at fixed operating
conditions (i.e. constant Péclet number). This mechanism is different from the mass
transfer mechanism first proposed by Wu, Ye & Sudicky (2010) and then quantified
by Dejam et al. (2014), where the channel–matrix interface flux increases (and the
dimensionless dispersion coefficient κd decreases) with increasing Péclet number and
is independent of the matrix properties λ and h. In the zero-permeability limit, i.e.
λ→ ∞, and for fixed Pe, κf → κd, as expected. In the following, we focus on the
study of the dispersion coefficient in the matrix, κf , only, since it is deemed more
relevant to many engineering applications where transverse mixing enhancement in
the channel is the primary target.

We aim to identify the scaling behaviour of κf in different regimes, if it exists.
Combining (3.11) and (3.10) with (4.1) leads to

κf = 105
1 + Pe2If

105 + 2Pe2 , (4.3)

with If given by (3.11). We define κf ,Pe→0 and κf ,λ→∞ as the fracture dimensionless
dispersion coefficients in the two purely diffusive limits: Pe→0 for any λ, and λ→∞
for any Pe respectively. The coefficient κf ,Pe→0 corresponds to the scenario where mass
transport in the matrix is driven solely by diffusion since Pe = 0; κf ,λ→∞ corresponds
to the case of diffusive transport in an impermeable matrix. The latter differs from
Aris–Taylor dispersion in that the channel–porous interface is impermeable to flow,
but permeable to mass. If Pe → 0, D?

f = 1 and

κf ,Pe→0 :=
limPe→0 D?

f

DAT

= 105

105 + 2Pe2 . (4.4)

Since Λ → ∞ when λ→ ∞ for h 6= 0, then

κf ,λ→∞ :=
limλ→∞ D?

f

DAT

= 105 + Pe2Ψ 2

105 + 2Pe2 . (4.5)

Combining (4.4) and (4.5) with (4.3) leads to the following expression for κf :

κf = κf ,Pe→0 + g(Λ, λ) · (κf ,λ→∞ − κf ,Pe→0), (4.6)

where g(Λ, h) is defined in (3.13). In order to isolate the dependence of κf from
the matrix properties, λ and h, we define the normalized dimensionless dispersion
coefficient Π ,

Π := κf − κf ,Pe→0

κf ,λ→∞ − κf ,Pe→0

, (4.7)
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which satisfies

Π = g(Λ, λ) = −7

3

Uslip

Ψ
, (4.8)

i.e. it is independent of Pe. It is worth noticing that Π scales as Uslip normalized
by Ψ . In figure 2, κf reaches a Pe-independent threshold when Pe → ∞. Since
limPe→∞(κf ,Pe→0) = 0 and limPe→∞(κf ,λ→∞) = Ψ 2/2, then

lim
Pe→∞

κf ∼ lim
Pe→∞

Π. (4.9)

From (4.8), we obtain

κ threshold
f = lim

Pe→∞
κf = −7Ψ

6
Uslip = Ψ 2

2
Π, (4.10)

i.e. in the advective limit the dispersion coefficient is controlled by the slip velocity
at the interface between the porous matrix and the channel.

In the following, we study the scaling behaviour of Π (or Uslip/Ψ ) for thin (Λ� 1)
and thick (Λ � 1) porous matrices.

4.1. Thin porous matrix limit, Λ � 1

The asymptotic expansion of (4.8) about Λ = 0 leads to

Π = 7

3

[(

h + h2

2

)

−
(

h

3
+ 5h2

24

)

Λ2 + O(Λ5)

]

, (4.11)

since tanhΛ≈Λ−Λ3/3 + O(Λ5) and sechΛ≈ 1 −Λ2/2 + 5Λ4/24 + O(Λ6). Retaining
the leading-order term, we obtain

Π ∼ h

(

1 + h

2

)

, for Λ � 1, (4.12)

which shows that the dispersion is controlled by the matrix thickness h for thin
porous layers. Figure 3(a) shows the scaling behaviour of Π(h2 + 2h)−1 versus Λ

and suggests that the scaling (4.12) is a valid approximation for Λ → 1 as well, i.e.

Π ∼ h

(

1 + h

2

)

, for Λ. 1. (4.13)

Further, two scaling regimes exist for h � 1 and h � 1, i.e.

Π ∼ h, for Λ. 1, h � 1 (4.14a)

Π ∼ h2, for Λ. 1, h � 1. (4.14b)

In figure 3(b), we plot Πh−1 as a function of h for different Λ ∈ [0.001, 1]. As
expected, Πh−1 is constant when h � 1 and grows linearly with h when h � 1. This
result suggests that transverse mixing in a channel with a thin porous coating (Λ� 1)
is controlled by h, and is more sensitive to the matrix width when h � 1, i.e. for a
given increase in H, 1H, better mixing can be achieved if H > b.
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FIGURE 3. (Colour online) (a) Scaling behaviour of the normalized dispersion coefficient
Π defined in (4.7) for thin porous media (Λ. 1) and (b) h < 1 and h > 1. The coefficient
Π , i.e. transverse dispersion, is controlled by the width h of the porous matrix when Λ.
1; this dependence goes from linear to quadratic as h increases above the threshold h ≈ 1.

4.2. Thick porous matrix limit, Λ � 1

In the limit Λ � 1, i.e. for thick porous matrices, we expand (4.8) about 1/Λ = 0 and
obtain

Π = 7

3

(hΛ−1 + h2Λ−2)e2Λ − h2Λ−2eΛ − hΛ−1

1 + e2Λ
+ O(Λ−2), (4.15)

since eΛ(1 + e2Λ)−1 → 0 and e2Λ(1 + e2Λ)−1 → 1 when Λ → ∞. At the leading order,

Π ∼ 1

λ
, for Λ � 1, (4.16)

i.e. the normalized dispersion is controlled by the matrix permeability only. Figure 4
shows that Πλ reaches a Λ-independent value for Λ� 1, as suggested by (4.16). This
analysis shows that when increasing the thickness of the matrix for a given λ, further
increments of h will no longer affect the slip velocity when Λ � 1. In this regime,
the bottom wall of the matrix (located at y = −h) becomes ‘invisible’ to the flow and
transport in the channel, and changes in h will not influence the channel dynamics.
For a given channel–matrix system with Λ � 1, an effective control of the dispersion
can be achieved by modifying the permeability of the porous medium.

5. Validation and model accuracy: numerical experiments

The system (3.5) is composed of two one-dimensional transient coupled upscaled
equations. The coupling is due to the mass exchange at the interface between the
channel and the matrix. Here, we solve the coupled system (3.5) numerically. We test
the accuracy of the upscaling approximation (3.5a) and (3.5b) by comparison with the
averaged 2D solution obtained from numerically solving (2.18a) and (2.18b).
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FIGURE 4. (Colour online) Scaling behaviour of the normalized dispersion coefficient Π
defined in (4.7) for thick porous media (Λ � 1). The normalized dispersion coefficient is
controlled by the matrix permeability only when Λ � 1.

5.1. Code validation

For the discretization of the 1D equations (3.5), we use implicit Euler in time
and second-order central finite difference discretization in space. For the 2D
equations (2.18), we use backward Euler for the time discretization and second-order
discretization in space, with upwinding for the advective term and central finite
differences for the other terms. A convergence study is performed on the 1D solver
by refining the grid size and time step. We validate the 2D solver by setting φ = 1,
Df = Dmx = Dmy and uf = um = u? in (2.18). This corresponds to passive transport
in a single channel (and no porous medium) with uniform velocity u? for which a
closed-form analytical solution is available (Ogata & Banks 1961). We compare the
numerical average of the pore-scale concentration cf with the analytical solution for
the continuous injection of a passive solute. The mean concentration profile satisfies
(Ogata & Banks 1961)

〈cf 〉(x, t) = 1

2

[

erfc

(

x − u?t

2
√

Df t

)

+ exp

(

u?x

Df

)

erfc

(

x + u?t

2
√

Df t

)]

. (5.1)

Figure 5 shows the match between the numerically upscaled 2D concentration and
the analytical solution (5.1).

5.2. Upscaled model accuracy and predictivity

We verify the accuracy of the upscaling procedure by comparing the macroscale
concentrations 〈cf 〉1D and 〈cm〉1D obtained from (3.5) with the numerical averages of
the microscale two-dimensional concentrations obtained from (2.18), 〈cf 〉2D and 〈cm〉2D.
The upscaled model (3.5) is considered to be predictive of pore-scale behaviour if
the absolute error between upscaled and microscale quantities is bounded by

√
ε, as

prescribed by the homogenization procedure. All parameters in the 2D pore-scale
equations are uniquely mapped onto the effective parameters of the corresponding
macroscopic system.

Without loss of generality, we consider a continuous injection at the channel inlet,
i.e. cf (x = 0, y, t) = 1 and ∂xcm(x = 0, y, t) = 0. This corresponds to the inlet boundary
conditions 〈cf 〉(x = 0, t) = 1 and ∂x〈cm〉(x = 0, t) = 0 in the upscaled model.

In figure 6, we compare the averaged fully resolved two-dimensional and the
upscaled approximated solutions 〈cf 〉2D(x, t) and 〈cf 〉1D(x, t) respectively for different
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FIGURE 5. (Colour online) Comparison between the averaged 2D concentration in the
channel and the 1D analytical solution, equation (5.1) (Ogata & Banks 1961), for passive
scalar transport in a single channel with uniform velocity and constant injection. The
average concentration 〈cf 〉 is plotted in terms of the dimensionless distance from the
channel inlet at different instances in time t̃. Here, h = 10, φ = 1, ε = 0.01, Df = Dmx =
Dmy = 1 and uf = um = u? = 0.01.

values of the Péclet number, Pe = {0.1, 10, 100, 1000}, and porosity, φ = {0.01, 0.1},
and plot the absolute error Ef (x, t) := |〈cf 〉2D − 〈cf 〉1D|. The simulations in figure 6 are
run for ε = 0.02, λ= 10 and φ = 0.1.

In figure 6, we show that the absolute error between the 2D and 1D models
decreases with increasing time and distance from the inlet for all scenarios. More
specifically, the macroscopic 1D model performs within the expected accuracy for
Pe < ε−1/2 (≈ 7 for ε = 0.02), i.e. Ef (x, t) is bounded by

√
ε, see figure 6(d,h). The

error bound is satisfied even when the constraints on the Péclet number are relaxed,
i.e. O(ε−1/2) 6 Pe 6 O(ε−1), or 10 6 Pe 6 Pe? in figures 6(b, f ) and (c,g). This result
highlights that the conditions (1) and (2) are sufficient, but not necessary, to guarantee
that error bounds prescribed by homogenization theory are realized. For Pe > O(ε−1)

(or Pe > Pe?), Ef (x, t) >
√

ε for early times; the 1D model regains its accuracy at late
(dimensionless) times t > εPe, i.e. t > 20 in figure 6(a,e).

In figure 7, we plot the profiles of the average concentration in the channel obtained
from the numerically averaged 2D equations and the 1D upscaled equations. The
simulations are run for λ= 31.6 and φ = 0.1. The error between the microscale and
macroscale equations, figure 7(b), is lower compared with the scenario with the same
Péclet number and higher permeability and porosity, specifically figure 6(c,g). This
is consistent with the upscaling approach, where higher-order terms in the transverse
direction are neglected, thus leading to increased error for a highly permeable matrix.

To further investigate the accuracy of the upscaled equations in different regimes
and the temporal dependence of the error, we plot the solute breakthrough curves at
a given location x = x? along the channel.

In figure 8, we plot the concentration profile for three Péclet numbers and two
values of the dimensionless permeability, λ=

√
102 and λ=

√
103. For Pe � 1, there

is an excellent agreement between the upscaled and two-dimensional solutions for all
times and both permeability values. The match is within the expected error bounds,
figure 8(a). For higher Péclet numbers, Pe = 1 (figure 8b) and Pe = 1000 (figure 8c),
the upscaled solution can still capture the averaged pore-scale concentration despite
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FIGURE 6. (Colour online) (a–d) Average concentration profiles 〈cf 〉 along the channel
obtained either from the upscaled 1D (solid lines) or the pore-scale 2D equations (dashed
lines) for different instances in time and Péclet numbers, i.e. Pe = {0.1, 10, 100, 1000}.
(e–h) Absolute error Ef (x, t) := |〈cf 〉2D − 〈cf 〉1D| corresponding to each simulation. The
dashed horizontal line represents the error bound

√
ε prescribed by homogenization theory.

As predicted, the 1D equations capture the pore-scale dynamics within errors of order
√

ε
for Pe < ε−1/2 ≈ 7. Importantly, for 10 < Pe < 100, the 1D simulation is still accurate. For
Pe = 1000, the error is not bounded by

√
ε at early times, but the 1D model accuracy

is recovered at later times. The simulation parameters are ε = 0.02, λ= 10, Ψ = −0.78,
φ = 0.1, Df = 1, Dmx = 0.1, Dmy = 0.1 and h = 10.
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FIGURE 7. (Colour online) Simulation parameters: ε = 0.02, λ= 31.6, φ = 0.1, Ψ =−0.78,
Df = 1, Dmx = 0.1, Dmy = 0.1, h = 10. (a) Average concentration profiles 〈cf 〉 along the
channel obtained either from the upscaled 1D (solid lines) or from the pore-scale 2D
equations (dashed lines) for different instances in time. (b) Absolute error Ef (x, t) :=
|〈cf 〉2D − 〈cf 〉1D| corresponding to each simulation. The dashed horizontal line represents
the error bound

√
ε prescribed by homogenization theory.
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FIGURE 8. (Colour online) Time evolution of the channel average concentration 〈cf 〉
calculated at location x? = b for different λ and Péclet numbers. The parameters used in
the simulations are φ = 0.01, Ψ = −0.78, ε = 0.01, Df = 1 and h = 10.

the fact that condition (2) is violated for Pe = 1000. Good performance of the model
in regimes where (2) is violated can be expected since such a constraint is simply a
sufficient (and not necessary) condition to guarantee that the upscaled equation (3.5)
describes spatially averaged pore-scale processes within errors of order

√
ε. For Pe =

1000 the match between the upscaled and the averaged pore-scale solution improves
at later times. Since condition (2) is violated, the transient terms in the expansion,
specifically ∂tc

(0)
f and ∂tc

(0)
m in (A 3a), are not negligible and should be accounted for
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FIGURE 9. Difference between the average concentration in the channel 〈cf 〉 for two

values of the dimensionless permeability, λ =
√

102 and λ =
√

103, and different
Péclet numbers, obtained from (3.5). The set of parameters used in the simulations is
φ = 0.5, Ψ = −0.78, ε = 0.02, Df = 1, Dmx = 0.1, Dmy = 0.1, h = 10. The concentration
〈cf 〉 is measured at x = 1.

at the leading order. Failing to do so yields to a slightly higher approximation error,
which decreases in time as the solution approaches the steady state and the transient
terms become increasingly small, i.e. ∂tc

(0)
f → 0 and ∂tc

(0)
m → 0 as t → ∞.

5.3. Upscaled model results

Figure 9 shows the difference between the average concentrations in the channel
calculated from (3.5) for two values of λ, λ=

√
102 and λ=

√
103, at a given location

along the channel, and for different Péclet numbers. Figure 9 shows how differences
in matrix permeability become more relevant for intermediate Péclet numbers, i.e.
Pe ∈ (1, Pe?), when the interplay between advective and diffusive mass transfer is
strongly controlled by the matrix properties. For Pe<1, diffusive transport is dominant.
In this scenario, the geometrical characteristics of the matrix have a small impact on
transport. Similarly, for Pe > Pe?, the impact of the matrix permeability decreases. In
advection-dominated regimes, the concentration reaches saturation (cf = 1) in a short
period of time. This leads to a weak dependence of the macroscale concentration on
the matrix topological features.

Figure 10 shows the temporal evolution of the macroscopic concentration in
the channel and the matrix at a given location along the flow direction. In
diffusion-dominated regimes, i.e. when Pe < 1, figure 10(a), the concentration
difference in the matrix and the channel is very small. Fast diffusive mass transport
enhances transverse mixing at the interface between the matrix and the channel, and
leads to decreased differences in concentration between the former and the latter. For
high Péclet numbers, figure 10(b), the difference in the average concentrations in the
matrix and the channel increases due to the delay in advective mass transfer in the
matrix. As a result, the concentration gradient, and therefore the mass flux, across
the matrix–channel interface increases with Pe for a given permeability value.
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FIGURE 10. (Colour online) Comparison between 〈cf 〉 (solid lines) and 〈cm〉 (dashed lines)
for low (a) and high Péclet numbers (b). The simulation parameters are φ = 0.5, Ψ =
−0.78, ε = 0.02, Df = 1, Dmx = 0.1, Dmy = 0.1, h = 10. The concentrations 〈cf 〉 and 〈cm〉
are measured at x = 1.

5.4. Comparison with existing models

In this section, we compare the proposed model with that introduced by Dejam et al.,
who assume that mass transport in the porous matrix is purely diffusive and transverse
to flow (i.e. y-direction). This corresponds to the k = 0 (or λ → ∞) limit in the
present model. To analyse differences and/or similarities in performance between the
two models, we consider two configurations: a highly permeable (λ=0.3) and a nearly
impermeable (λ = 100) matrix. Dejam et al.’s solution for the average concentration
in the fracture, 〈c〉f ,DHC, is (Dejam et al. 2014)

〈c〉f ,DHC(x, tD) = eαtD

tD

{

1

2
Ĉf ,DHC(x, α) + Re

[

n
∑

l=1

(−1)lĈf ,DHC

(

x, α + lπ

tD

√
−1

)

]}

,

(5.2)
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FIGURE 11. (Colour online) (a,c,e) Comparison between the breakthrough curves obtained
from (3.5a) and (5.2) (by Dejam et al.) and the averaged pore-scale solution for two
permeability values, λ = 0.3 and λ = 100. (b,d, f ) Absolute errors between the upscaled
solutions (3.5a) and (5.2) and the averaged pore-scale solution, E1D(x, t; λ) := |〈cf 〉2D −
〈c〉f ,1D| and ED(x, t; λ) := |〈cf 〉2D − 〈c〉f ,Dejam et al.| respectively. The simulation parameters
are ε = 0.02, φ = 0.1, Ψ = −1, Df = 1, Dmx = 0.1, Dmy = 0.01 and h = 10.

where Re[·] represents the real part of a complex function, α controls the accuracy
of the numerical Laplace transform and tD = t̃/(b2/Dmy). In the following comparative
study, we use the dimensionless time defined in (3.2) instead. Moreover, we set αtD =
4 and use n = 1e5 terms in the summation.

In figure 11, we compare the models (3.5a) and (5.2) (by Dejam et al.) with the
macroscopic concentration obtained from averaging the pore-scale solution. For low
Péclet numbers, both models perform well independently of the matrix permeability.
For high Péclet number (Pe = 100) and low permeability (or high λ), Dejam et al.’s
solution shows a better accuracy than the upscaled model proposed here. This is
apparent from the error Ef plotted in figure 11 as a function of time: while model
(3.5a) can still be considered to be predictive since Ef is bounded by

√
ε, Dejam

et al.’s solution has a lower maximum error. Conversely, for Pe = 100 and high
permeability values (or low λ), our upscaled equation (3.5a) is more accurate than
(5.2). Importantly, in this scenario, the error in Dejam et al.’s solution is not bounded
by

√
ε, i.e. the error is larger than that prescribed by the upscaling procedure. Finally,

for very large Pe (Pe = 1000), both models give higher errors at early times, regardless
of the permeability value. This analysis demonstrates that the model described by
(3.5a) and Dejam et al.’s solution are complementary to each other, since the former
can accurately describe macroscopic mass transport in advection-dominated regimes in
coupled systems with highly permeable matrices, while the latter captures transverse
diffusion into the matrix only in the low-permeability case.
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6. Conclusions

Flow and transport above micro-patterned and porous surfaces occur in a variety
of systems, ranging from engineered surfaces to bioreactor devices. The achievement
of optimal macroscopic properties, e.g. improved mixing, in a number of such
applications is hampered by the lack of understanding of how surface/matrix properties
(e.g. porosity, permeability and thickness) relate to the system or macroscale.

In this work, we use perturbation methods to study passive scalar transport in a
coupled channel–matrix system and obtain an analytical relationship between matrix
properties and solute transverse dispersion. To the best of our knowledge, this is the
first analytical relationship that establishes a connection between macroscopic transport
features, matrix properties and transport regimes (i.e. Péclet number). We accomplish
this by deriving upscaled equations for mass transport in a channel–matrix coupled
system, while accounting for two-dimensional diffusion and a non-uniform velocity
field both in the channel and in the matrix. The average velocity profile in the coupled
system, as well as the slip velocity at the channel–matrix interface, is determined by
a two-domain approach where the Stokes and Darcy–Brinkman equations are coupled
to describe flow in the channel and in the permeable matrix respectively.

Our results show that the impact of matrix properties on solute transverse mixing,
and, more specifically, on the macroscopic dispersion coefficient, is controlled by
the magnitude of the Péclet number. In particular, for Pe < 1, transport in the
channel–matrix system is dominated by diffusion, and the matrix properties have
little to no impact on macroscopic transport. In this regime, mixing is controlled
by diffusion in the direction transverse to the mean flow, and the dimensionless
dispersion coefficient is independent of both Pe and the matrix permeability. When
1 < Pe < Pe?, solute transport is controlled by both diffusion and advection. The
interplay between these mass transport mechanisms is strongly dependent on both
the matrix permeability and the Péclet number. In this regime, macroscale dispersion
can be controlled by both active and passive mechanisms. The former consist in
modifying the operating flow conditions of the device (i.e. Péclet number), while the
latter are based on modifying the surface coating properties (i.e. permeability). For
Pe > Pe?, mass transport is dominated by advection, and the dispersion coefficient
reaches a constant value independent of the Péclet number and a function of the
matrix permeability only. By means of asymptotic analysis, we demonstrate that
different scaling regimes of the normalized dispersion coefficient Π exist for thin
(Λ . 1) and thick porous layers (Λ � 1). In particular, Π is controlled by the
dimensionless width h of the porous matrix, when Λ . 1, and scales linearly or
quadratically with h, when h < 1 or h > 1 respectively. In the thick-porous-medium
regime, Π is controlled by the matrix permeability λ. This provides specific design
guidelines to optimize mixing in channel–porous systems.

The upscaled model was validated against numerical simulations of the fully
resolved two-dimensional channel–matrix coupled system. The upscaled solution
agrees with the average concentration obtained from the exact two-dimensional ADEs
within the error bound prescribed by the homogenization approach and performs well
for large Pe, despite the fact that condition (2) is violated. This is to be expected
since the latter is a sufficient (and not necessary) condition to guarantee that the
upscaled equation (3.5) describes spatially averaged pore-scale processes within errors
of order

√
ε.

Finally, a detailed comparison between our model and that of Dejam et al. (2014),
which only considers one-dimensional transverse diffusion in the matrix, shows
that the two models are complementary to each other. For systems with permeable
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matrices, we found our model to be superior to Dejam et al.’s for all considered
Péclet numbers. Conversely, unlike Dejam et al.’s model, our model cannot accurately
capture the tailing effect introduced by the purely diffuse interfacial mass flux in
impermeable matrices.

To the best of our knowledge, this is the first study that provides (i) a rigorous
basis to relate the matrix permeability to the dispersion coefficient in coupled channel–
matrix systems and (ii) quantitative guidelines for the design of porous/micro-patterned
surfaces. The analysis also shows the possibility of controlling dispersion by either
active (i.e. changing the operating conditions) or passive mechanisms (i.e. controlling
the matrix properties) in the appropriate range of Péclet numbers.
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Appendix A. Asymptotic expansion

Substituting (3.4) into (3.2a) and (3.2b) leads to

ε1−α

(

∂c
(0)
f

∂t
+

√
ε
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(1)
f
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f
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εuf
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+ εuf
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= εDf
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(2)
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(A 1)

and

ε1−α

(

∂c(0)
m

∂t
+

√
ε
∂c(1)

m

∂t
+ ε

∂c(2)
m
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)
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(

um

∂c(0)
m
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√
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+ εum
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m
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(
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m
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(A 2)

respectively. Given α < 1/2, we collect terms of like power of ε as follows:

√
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ε−αuf
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f

∂ξ
− Df

∂2c
(1)
f
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(1)
f
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)

= O(ε2), (A 3a)
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= O(ε2). (A 3b)

Equations (A 3a) and (A 3b) lead to a cascade of equations for the unknown functions
c

(i)
j . Specifically, for c

(i)
f and c(i)

m we obtain

∂2c
(1)
f

∂y2
= ε−α uf

Df

∂c
(0)
f

∂ξ
, (A 4a)

ε−α
∂c

(0)
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(1)
f

∂ξ
= Df

∂2c
(0)
f
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, (A 4b)
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and
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m
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Dmy

∂c(0)
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, (A 5a)
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= Dmx
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respectively. Expansion of the interface conditions (2.22) yields

[c(0)
f +

√
εc

(1)
f + εc

(2)
f ]y=0 = [c(0)

m +
√

εc(1)
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m ]y=0 (A 6)

and
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√
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]

y=0

. (A 7)

Matching like powers of ε in (A 7) leads to

[

∂c
(1)
f

∂y

]

y=0

= φDmy

Df

[

∂c(1)
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∂y

]

y=0

, (A 8)

[

∂c
(2)
f

∂y

]

y=0

= φDmy

Df

[

∂c(2)
m

∂y

]

y=0

. (A 9)

The cascade of equations (A 3) and (A 4) subject to the boundary conditions (A 6)
and (A 8) can be solved iteratively.
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Appendix B. Order O(
√

ε): c
(1)
f and c(1)

m solutions

Integrating equation (A 4a) with respect to y gives

∂c
(1)
f

∂y
= ε−α

Df

(
∫ y

0

uf dy + M1

)

∂c
(0)
f

∂ξ
, (B 1)

where the integration constant M1 is determined by using the no-flux condition (2.20)
and the velocity profile (2.7),

M1 = −
∫ 1

0

uf dy = −
(

Ψ

6
+ A

2
+ B
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, (B 2)

and A and B are defined in (2.9). Integration of (B 1) yields

c
(1)
f = ε−α

Df
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(0)
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∫∫ y

0
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. (B 3)

By postulating 〈c(1)
f 〉 = 0 (Mikelic et al. 2006), we can solve for M2,

M2 = −
(

Ψ

120
+ A

24
+ B

2
+ M1

2

)

. (B 4)

Inserting (B 4) and (B 2) in (B 3) leads to

c
(1)
f = M(y)

ε−α

Df

∂c
(0)
f

∂ξ
, (B 5)

where

M(y) = Ψ

24
y4 + A

6
y3 + B

2
y2 + M1y + M2. (B 6)

Similarly, double integration of (A 5b) yields a solution for c(1)
m in the following form:

c(1)
m = ε−α

Dmy

N(y)
∂c(0)

m

∂ξ
, (B 7)

where

N(y) = E

λ2
eλy + F

λ2
e−λy − Ψ

2λ2
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(

E

λ
− F

λ

)

y + N1y + N2. (B 8)

Here, E and F are defined in (2.9) and N1 and N2 are integration constants. The
constant N1 is determined by imposing the boundary condition (2.20),

N1 = E

λ
(1 − e−λh) − F

λ
(1 − e−λh) + Ψ h

λ2
, (B 9)

and N2 is determined by imposing 〈c(1)
m 〉 = 0,

N2 = −
[
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hλ3
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2

(

E
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− N1h

2

]

. (B 10)

Equations (B 7), (B 9) and (B 10) fully define c(1)
m .
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Appendix C. Order O(ε): c
(2)
f and c(2)

m solutions

By inserting (B 5) into (A 4b), we obtain
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which provides an equation for c
(2)
f . Averaging (C 1) gives
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Subtracting (C 2) from (C 1) yields
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where the boundary term can be rewritten using (A 9). This leads to
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Integration in y gives
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where K1 is an integration constant. Using the no-flux boundary condition at y = 1
(2.20), while observing that

∫ 1

0 (uf M − 〈uf M〉) dy = 〈uf M − 〈uf M〉〉 = 0, yields

K1 = 1. (C 6)

Integrating (C 5) in y once more leads to
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Since 〈c(2)
f 〉 = 0, then
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Finally,
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A similar procedure leads to
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Appendix D. Upscaled equations

Applying the averaging operator to (A 1) and (A 2) while accounting for the third
boundary condition (2.20) leads to
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and
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respectively, since 〈c(1)
j 〉 = 〈c(2)

j 〉 = 0 and 〈cj〉 = 〈c(0)
j 〉, with j = {f , m}. In order to close

(D 1) and (D 2), the non-local advective terms and the boundary terms ought to be
expressed in terms of macroscale quantities. Averaging (A 4c) leads to
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since 〈c(1)
f 〉 = 0. Inserting (B 5) in (D 1) while accounting for (D 3) gives
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Similarly, for the matrix we obtain
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The last step to close (D 4) and (D 5) is to determine the boundary flux terms
[∂yc

(1)
f ]y=0 and [∂yc

(2)
f ]y=0. Combining the boundary condition (A 8) with (B 7) gives
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where N ′ = dN/dy and [N ′]y=0 = N1, see (B 8). Therefore,
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Combining (D 7) with (A 8) gives
[
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Similarly, for the matrix,
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From (C 9) we obtain
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At the interface y = 0, continuity of concentration (A 6) imposes

εc(2)
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Hence,
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A similar relation can be found for the channel,
[
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Inserting (D 8), (D 9), (D 12) and (D 14) into (D 4) and (D 5) gives
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and
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By rescaling the axis back to the physical coordinate x, multiplying both sides by ε1−α

and using the Péclet number definition, we obtain the macroscopic equations (3.5a)
and (3.5b).
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