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Abstract Canopy layers control momentum and solute transport to and from the overlying water surface
layer. These transfer mechanisms strongly dependent on canopy geometry, affect the amount of solute in
the river, the hydrological retention and availability of dissolved solutes to organisms located in the vegetat-
ed layers, and are critical to improve water quality. In this work, we consider steady state transport in a veg-
etated channel under fully developed flow conditions. Under the hypothesis that the canopy layer can be
described as an effective porous medium with prescribed properties, i.e., porosity and permeability, we
model solute transport above and within the vegetated layer with an advection-dispersion equation with a
spatially variable dispersion coefficient (diffusivity). By means of the Generalized Integral Transform Tech-
nique, we derive a semianalytical solution for the concentration field in submerged vegetated aquatic sys-
tems. We show that canopy layer’s permeability affects the asymmetry of the concentration profile, the
effective vertical spreading behavior, and the magnitude of the peak concentration. Due to its analytical fea-
tures, the model has a low computational cost. The proposed solution successfully reproduces previously
published experimental data.

1. Introduction

Vegetation exerts a major role in regulating water quality and riverbanks stability by increasing bed rough-
ness and decreasing near-bed turbulent stress. Canopies create an additional drag that decreases the flow
velocity within the vegetated layer. This velocity reduction shelters biota and promotes the hydrological
storage and retention of nutrients, heavy metals, and microbes, as well as the trapping of sediments inside
the canopy layer [e.g., Costanza et al., 1997; Nepf, 2012]. Canopy layers behave as a mass-transfer limited sys-
tem that exchanges mass and momentum with the overlying water surface layer [Ghisalberti and Nepf,
2005; Lowe et al., 2005; Variano et al., 2009]. These transfer mechanisms, strongly dependent on canopy
geometry, affect the amount of solute in the river as well as the hydrological retention and availability of
dissolved solutes to organisms located in the vegetated layers. One such example, relevant to processes in
the hyporheic zone, includes the mass transfer to sediments microflora [Thomas et al., 2000]. These effects
are particularly relevant in dense canopies, where the vegetation drag is sufficient to induce an inflection
point in the mean velocity profile at the top of the vegetation [e.g., Ghisalberti and Nepf, 2002; Konings et al.,
2012; Luhar et al., 2008]. As a result, the turbulent stress penetrates the canopy layer only partially leading
to the formation of high- and low-exchange zones in the upper part of the canopies and close to the river
bed, respectively [Ghisalberti and Nepf, 2005].

Given canopies’ crucial role in regulating eco-services and water management, transport in vegetated sys-
tems needs to be quantified in order to predict solute distribution and peak concentrations due to chemical
releases in rivers. The latter is directly linked to the magnitude of both environmental and human health
risks which are, in turn, affected by the density of the canopy. Additionally, transport models can provide
insights for designing experimental apparati and predict the effect of vegetation on river metabolism (e.g.,
the Biological Oxygen Demand).

In vegetated aquatic environments, the free flow layer is responsible for transporting solutes faster while
the canopy layer tends to retain the chemical substances. The importance of vertical velocity profiles on sol-
ute breakthrough is a well-studied subject in hydrology and the environmental fluid mechanics communi-
ties [e.g., Fischer, 1979]. The interplay between shear flow and mixing in vegetated aquatic systems has
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been investigated in the literature [e.g., Ghisalberti and Nepf, 2005; Poggi et al., 2009; Nepf, 2012]. Strategies
for quantifying transport in vegetated rivers consist of lumped-parameter models [Ghisalberti and Nepf,
2005], upscaled models [Marion et al., 2008], and numerical solution of the advection-dispersion equation
[Kang and Choi, 2009]. The fast time scale associated with open surface flows requires the need to develop
computationally fast solutions that capture the main physical attributes of the system. This is particularly
important for contamination originating from accidental spills or extreme events where real-time solutions
are needed to provide the basis of rational decision making and clean up strategy. Within this context, and
with the aim of alleviating the associated computational burden associated with numerical methods, we
propose the use of a reduced-complexity semiempirical model for the velocity field that enables to map the
effects of the obstructed shear flow on transport predictions by means of analytical tools.

With the objective of capturing the effects of the velocity profile (induced by the presence of vegetation)
on transport predictions, we develop a computationally efficient semianalytical solution for the solute con-
centration. The solution methodology is based on the well-established Generalized Integral Transform Tech-
nique [e.g., Cotta, 1993; Sphaier et al., 2011; Cotta et al., 2013] which provides a hybrid analytical-numerical
solution for the model prediction. This technique has its origins in the heat transfer and fluid flow commu-
nity [e.g., Cotta, 1993; €Ozişik and Mikhailov, 1994] and has been used to address pollutant dispersion in
channels in the absence of canopies [de Barros et al., 2006; de Barros and Cotta, 2007]. The works of de Bar-
ros et al. [2006] and de Barros and Cotta [2007] derived solutions for the advection-dispersion equation
with spatially variable coefficients in two- and three-dimensions. Guerrero and Skaggs [2010] adopted the
integral transform method of Cotta [1993] to develop a solution for the one-dimensional advection-disper-
sion equation with distance-dependent coefficients. Hirata et al. [2009] used the same methodology to
investigate the stability of natural heat convection in a fluid layer overlying a homogeneous porous medi-
um. In this work, we apply it for the first time to investigate the impact of vegetation on solute transport.
The methodology is appealing since it is flexible and computationally inexpensive in comparison to exist-
ing numerical models. The velocity profile we adopt is based on the two-domain model proposed by Bat-
tiato and Rubol [2014]. The proposed flow model treats the canopy layer as a porous medium [see Lowe
et al., 2008; Papke and Battiato, 2013; Battiato and Rubol, 2014] and is coupled to the advection-dispersion
equation with spatially variable coefficients. Our work aims to address the following fundamental question:

How does vegetation regulate solute disper-
sion? Our results show that the asymmetry of
the solute concentration profile, and there-
fore the peak concentration and overall dis-
persive behavior are mainly controlled by the
geometrical properties of the canopy. Finally,
the predictive capabilities of the model are
successfully tested using the experimental
tracer data of Ghisalberti and Nepf [2005].

The paper is structured as follows: section 2
describes the flow model of Battiato and
Rubol [2014]. The transport formulation and
the solution methodology are given in section
3. Results are analyzed in section 4. Conclu-
sions are provided in section 5.

2. Turbulent Flow Over a
Permeable Layer

We consider a 2-D fully developed incom-
pressible turbulent flow in an open channel
of total height H 1 L and slope h� 1 with
S0 :¼ tan h � h (such that S0 � sin h), whose
bottom part, ẑ 2 ð0;HÞ, is occupied by an
undeformable porous medium of permeability

Figure 1. Schematic illustration of the flow domain under consideration.
Adapted from Battiato and Rubol [2014].
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K constituted of a regular array of rigid cylinders transverse to the mean flow (see Figure 1). Such an obstruc-
tion model provides a good approximation of rigid, or moderately flexible, submerged aquatic canopies.

2.1. Two-Domain Approach
Here we use the flow model proposed by Battiato [2012] and Battiato and Rubol [2014] as the analytical
approximation of the mean velocity profile above and within the obstruction. In the following, we provide
the flow model description for completeness.

In the surface layer, the steady state Reynolds’ equation for fully developed turbulent flow can be used to
describe the mean velocity in the direction parallel to the channel bottom, ûðẑÞ,

l
d2ûðẑÞ

dẑ 2 2q
dhû0ðẑÞv̂ 0ðẑÞi

dẑ
1qgS050; ẑ 2 ðH;H1LÞ; (1)

where g, l, and q are the gravitational acceleration, the fluid dynamic viscosity and density, respectively. In
(1), û 0 and v̂ 0 represent the velocity fluctuations about their respective mean, and hû 0v̂ 0i is the Reynolds
stress. Under a turbulent viscosity hypothesis, i.e., hû 0v̂ 0i52mtðẑÞdẑ û , where mt is the eddy viscosity [e.g., Ghi-
salberti and Nepf, 2004; Poggi et al., 2009], the total shear stress ŝðẑÞ can be written as follows:

ŝðẑÞ :¼ l
dûðẑÞ

dẑ
2qhû0ðẑÞv̂ 0ðẑÞi5lT ðẑÞ

dûðẑÞ
dẑ

; ẑ 2 ðH;H1LÞ; (2)

where lT :¼ l1qmtðẑÞ.

Turbulent flows above canopy layers can be also described with any of the empirically available variants of
the log law [Stephan and Gutknecht, 2002], e.g.,

ûðẑÞ5Û1
ûs

j
ln

ẑ
H

� �
; ẑ 2 ðH;H1LÞ; (3)

where j50:19 is the reduced von K�arm�an constant [Kubrak et al., 2008], Û is the (mean) velocity at the top
of the canopies, and ûs is the friction velocity defined in terms of the stress at the interface between the
free and filtration flows, ŝðH1Þ:

ûs :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝðH1Þ

q

s
: (4)

Equation (3) prescribes that the mean velocity profile approaching the canopies from above (ẑ ! H1)
should (i) match the mean interfacial velocity Û between the free and filtration flows and (ii) follow a trans-
lated log profile away from the free surface (ẑ < H1L).

Inside the canopies, the Darcy-Brinkman equation is customarily employed to describe the horizontal com-
ponent of the intrinsic mean velocity ûðẑÞ [e.g., Stephan and Gutknecht, 2002; Katul et al., 2011],

le
d2ûðẑÞ

dẑ 2 2
le

K
ûðẑÞ1qgS050; ẑ 2 ð0;HÞ; (5)

where K [L2] is the canopy permeability and le is the fluid ‘‘effective’’ viscosity, respectively. Since experi-
mental evidence suggests smoothness of the mean velocity profile at the interface, we set le :¼ lT ðH1Þ in
(5) [Katul et al., 2011; Papke and Battiato, 2013]. An estimate of lT ðH1Þ can be readily determined through a
consistency argument applied to (3) and (1). Integrating (1) from ẑ5H to ẑ5H1L, while accounting for (2)
and the zero shear condition at the free surface, ŝðH1LÞ50, yields

ŝðH1Þ5qgS0L and ûs5
ffiffiffiffiffiffiffiffiffi
gS0L

p
: (6)

Consistency between the log law (3) where ûs is given by (6), and the turbulent viscosity hypothesis (2)
requires that lT ðH1Þdẑ ûjH1 5qgS0L, where û is defined by (3). This yields to a self-consistent estimate of lT

at the interface between the free and vegetated flows [Battiato and Rubol, 2014].
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lT ðH1Þ5qjHûs: (7)

As experimental evidence suggests [e.g., Ghisalberti and Nepf, 2004; White and Nepf, 2007; Poggi et al., 2009],
equations (3) and (5) are subject to no shear condition at ẑ50, i.e., ŝð0Þ50, and continuity of velocity and
shear stress at the interface between the free and filtration flows ẑ5H, i.e., ûðH2Þ5ûðH1Þ5Û and
ledẑ ûjH2 5lT ðH1Þdẑ ûjH1 .

2.2. Analytical Solution for the Flow Field
Choosing the height of the canopies H, the effective viscosity le, and the velocity scale q5qgS0H2=le as
repeating variables, we rescale lengths and velocities by H and q, respectively, and define the following
dimensionless quantities:

z5
ẑ
H
; u5

û
q
; d5

L
H
; U5

Û
q
; k25

H2

K
; (8)

where d is the dimensionless channel depth and k is the inverse of the dimensionless permeability. Notice
that denser canopy corresponds to lower K or, equivalently, higher values of k. The analytical solution of (5)
and (3) for the dimensionless mean velocity profile u(z) inside and above the canopy layer is [Battiato and
Rubol, 2014]

uðzÞ5k221Cðekz1e2kzÞ; z 2 ð0; 1�; (9a)

uðzÞ5U1dln z; z 2 ð1; 11dÞ; (9b)

respectively, with

C5
1
2

dk21cschk; (10a)

U5k221dk21cothk; (10b)

and U :¼ uð1Þ denoting the interfacial velocity.

The model is amenable of analytical solution for the mean velocity, and allows one to determine closed-
form expressions for a number of relevant physical quantities, including volumetric discharge, bulk velocity,
penetration length, drag length scale, and canopy shear layer parameter (CSL), without relying on additional
parametrization. All such quantities can be uniquely quantified from the channel geometrical features, once
the canopy layer permeability has been estimated (e.g., from canopy density). However, the applicability of
the flow model in its current form is limited to steady state fully developed flows above and between rigid
(or moderately flexible) and spatially homogenous canopy layers. Generalizations to flexible and spatially
heterogeneous canopies would require (i) a coupling between the mechanics of the canopy bending and
the hydrodynamics and (ii) solution of equation (5) with nonconstant coefficients, i.e., KðẑÞ. The solution
accurately describes experimental (mean) velocity profiles both inside and above the obstruction, except in
proximity of the free interface were the log law is invalid [Battiato and Rubol, 2014]. Noticeably, (9) contains
only one model parameter, namely the dimensionless permeability k. The latter can be estimated from can-
opy density as described in Battiato and Rubol [2014] and allows one to directly correlate obstruction mor-
phology (e.g., LAI, porosity, canopy height) to the dynamic response of flow and transport in and above
arrays of rigid cylinders. Yet, the derivation of a formal expression that links canopy density to the perme-
ability of natural vegetation is current object of investigation. In the following, we employ the analytical
solution (9) to study the transport of a passive tracer in a coupled free/filtration flows system.

3. Mass Transport Above a Permeable Layer

We consider the continuous injection of a passive solute released at the inlet of a semi-infinite vegetated
channel. Similarly to the approaches available to model momentum transfer, mass transfer in coupled free
and filtration flows can be described using either single-domain or multiple-domain approaches. The former
employ a single balance equation with spatially varying coefficients to account for different transport mech-
anisms throughout the domain (e.g., turbulent versus hydrodynamic dispersion in the free and obstructed
flows, respectively). The fundamental hypothesis underlying single-domain approaches is that the
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governing equations in each region should have a similar structure, e.g., that of an advection-dispersion
equation (ADE). Instead, multidomain approaches use two different mathematical models (often with con-
stant coefficients in each subdomain), and couple the two formulations through continuity of state variables
and their fluxes at the interface. The advantage of multidomain approaches over single-domain models, as
apparent in section 2, is that equations with constant coefficients are generally easier to handle analytically.
Yet, in section 3.1, we present a single-domain approach for which a semianalytical solution can be found
(section 3.2). In section 4 we present a comparison between model predictions and experimental data and
show that the model simplifying assumptions are accurate enough for our modeling purposes.

3.1. Single-Domain Approach
Under the assumption that scales are well separated [e.g. Battiato et al., 2009; Battiato and Tartakovsky,
2011; Boso and Battiato, 2013; Arunachalam et al., 2015; Ling et al., 2016, and references therein], the space-
time upscaling of microscale (substem scale) transport leads to a macrodispersion equation for Fickian
transport [White and Nepf, 2003; Tanino and Nepf, 2008; Nepf and Ghisalberti, 2008], i.e., under a gradient-
diffusion hypothesis and for observation (macroscopic) times greater than turbulent timescales, the mass
transport of a passive tracer through and above a canopy layer can be described by the advection-
dispersion equation for the space-time averaged concentration ĉ ,

@ĉðŷ ; ẑ ; t̂Þ
@ t̂

5r̂ � ½D̂ðẑÞ r̂ĉðŷ ; ẑ ; t̂Þ2ûðẑÞĉðŷ ; ẑ ; t̂Þ�; ðŷ ; ẑÞ 2 ð0;1Þ3ð0;H1LÞ; and t̂ > 0; (11)

see White and Nepf [2003], Tanino and Nepf [2008], and Nepf [2012]. In (11), û is a known mean velocity dis-
tribution, e.g., (9), and D̂ is the dispersion tensor (or diffusivity), with ½D̂�115D̂‘ and ½D̂�225D̂v , the longitudi-
nal and vertical dispersion coefficients, respectively, and ½D̂�ij50 when i 6¼ j. The total diffusivity D̂ includes
both molecular diffusion and the turbulent eddy diffusivity, i.e., the mechanical dispersion due to subscale
fluctuations of the velocity field.

Under steady state conditions (i.e., @t̂ ĉ50) and for continuous release in a semi-infinite domain, the disper-
sive mass transfer is mainly vertical since @ẑ ðD̂v@ẑ ĉÞ � D̂v co=H2; @ŷ ðD̂‘@ŷ ĉÞ � D̂‘co=Y2 with co and Y charac-
teristic scales for ĉ and the longitudinal spatial direction, respectively, and H=Y � 1 [see also Yeh and Tsai,
1976; Nokes and Wood, 1988], i.e., neglecting longitudinal dispersive mass is a justifiable assumption for
tracers that are continuously released in time since the main mass-transfer mechanism stems from the verti-
cal dispersive flux [see McNulty and Wood, 1984]. Therefore, (11) reduces to

uðzÞ @cðy; zÞ
@y

5
@

@z
DvðzÞ

@cðy; zÞ
@z

� �
; ðy; zÞ 2 ð0;1Þ3ð0; 11dÞ (12)

where cðy; zÞ :¼ ĉ=co is the dimensionless concentration, Dv5D̂v=qH and u(z) is defined by (9). The concen-
tration at the injection point is denoted by co. Equation (12) is subject to

@cðy; zÞ
@z

���
z50

50; and
@cðy; zÞ
@z

���
z511d

50; and cð0; zÞ5f ðzÞ: (13)

where f zð Þ is the functional form of the injection zone. We point out that the partial differential equation
(12) as well as its semianalytical solution presented in section 3.2 are applicable to a variety of transport pro-
cesses ranging from the classical Aris-Taylor problem for mass transport in a pressure-driven channel flow
to the Graetz/LeVeque problem [see chap. 3 of Weigand, 2004; Graetz, 1882] in the convective heat transfer
communities.

3.2. Solution via Integral Transform
Fully analytical solutions of the advection-dispersion (or convection-diffusion) equation are in general avail-
able for uniform coefficients or velocity fields with specific functional forms (e.g., parabolic velocity profile)
[e.g., €Ozişik and Mikhailov, 1994; Weigand, 2004; Zoppou and Knight, 1999]. For a review of different techni-
ques used to solve the advection-dispersion equation with variable coefficients, we refer the interested
reader to de Barros and Cotta [2007] and references therein. Most (semi)analytical solutions of heat and
mass transfer in coupled (porous) matrix/free (laminar) flow systems routinely neglect advective/dispersive
transport in the matrix [Cotta et al., 2003; Roubinet et al., 2012; Mart�ınez et al., 2014]. As a result, these mod-
els are not representative of transport dynamics above hyperporous matrices (e.g., vegetation) where
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dispersive mass transport in the obstruction cannot be ignored. The analytical dependence of vertical dis-
persion on porous matrix permeability is available only for laminar flows in channel/matrix coupled systems
[Ling et al., 2016].

Studies involving direct numerical simulations of turbulent flows over permeable layers have mainly
focused on correlating turbulent structures to obstruction permeability and roughness by combining turbu-
lent closure schemes (e.g., k2� model) with averaged Darcy-Brinkman-Forchheimer type of models for flow
in the obstruction [e.g., Breugem et al., 2006; Suga et al., 2010, just to mention a few]. Direct numerical simu-
lations of turbulent flows over obstructions, where the pore-scale velocity between obstacles is fully
resolved are still computationally prohibitive. Despite its ubiquity to a number of both environmental and
technological systems, to the best of our knowledge, theoretical (both analytical and computational) model-
ing of mass transport in turbulent flows above obstructions has not been fully characterized yet. Existing
works are limited to experimental studies and empirical relations which attempt to capture the main trans-
port features [Ghisalberti and Nepf, 2005; Luhar et al., 2008; Tanino and Nepf, 2008; Nepf, 2012].

Currently no analytical/semianalytical solution is available to model mass transport in turbulent flows above
obstructions (i.e., vegetation) with spatially varying velocity profiles both within and outside the obstruction.
Here we employ a modification of the Generalized Integral Transform Technique [Cotta, 1993; €Ozişik and
Mikhailov, 1994] to find a semianalytical solution to (12) and (13) where u(z) is given by (9). The approach
has been successfully used to model nonvegetated river flows with nonuniform velocity fields with different
functional forms (e.g., parabolic and power law velocity fields) [de Barros et al., 2006; de Barros and Cotta,
2007]. We refer to Cotta [1993], €Ozişik and Mikhailov [1994], and €Ozişik [1993] for theoretical and computa-
tional details of the method and its origins.

Let us denote the transformed concentration field by �c . The integral transform and its inverse are defined
as follows:

�c mðyÞ5
ð11d

0

wðz; mÞffiffiffiffiffiffiffiffi
Nm

p cðy; zÞdz; (14a)

c y; zð Þ5
X1
m50

wðz; mÞffiffiffiffiffiffiffiffi
Nm

p �c mðyÞ (14b)

respectively, where the norm, Nm, is

Nm5

ð11d

0
wðz; mÞ2dz; (15)

and wðz; mÞ corresponds to the eigenfunction basis satisfying the auxiliary Sturm-Liouville problem

d2wðz; mÞ
dz2

1b2
mwðz; mÞ50 (16)

subject to

dwðz; mÞ
dz

���
z50

50 and
dwðz; mÞ

dz

���
z511d

50: (17)

The solution of (16) and (17) for the eigenfunctions wðz; mÞ and the eigenvalues bm is

wðz; mÞ5cos ðbmzÞ; (18a)

bm5
mp

11d
: (18b)

Given (18),

Nm :¼ 11d
2

for any m5f1; 2; . . .g and N 0 :¼ 11d: (19)

The selection of the homogeneous auxiliary problem to determine the eigenfunctions wðz; mÞ is nonunique
[€Ozişik and Mikhailov, 1994; Cotta, 1993]. Here we choose the auxiliary problem (16) with eigenfunction basis
(18) to expand c(y, z), since the convergence rate of (14b) is deemed appropriate. Alternative auxiliary
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problems (that may include information regarding the spatially variable coefficients of (12)) can be
employed to improve the convergence rate [e.g., Guerrero and Skaggs, 2010]. Such alternative formulations
for the Sturm-Liouville problem can be found in Cotta [1993] and €Ozişik and Mikhailov [1994].

We operate (12) and (13) with the integral transform (14a) to obtainð11d

0
wðz; mÞuðzÞ @cðy; zÞ

@y
dz5

ð11d

0
wðz; mÞ @

@z
DvðzÞ

@cðy; zÞ
@z

� �
dz: (20)

Inserting (14b) in (20), while accounting for (17), leads to the following system of coupled ordinary differen-
tial equations (ODEs) (for details, see Appendix A)

X1
j50

Amj
d�c jðyÞ

dy
5
X1
j50

Bmj�c jðyÞ; (21)

subject to

�c m 0ð Þ5
ð11d

0

wðz; mÞffiffiffiffiffiffiffiffi
Nm

p cð0; zÞdz5

ð11d

0

wðz; mÞffiffiffiffiffiffiffiffi
Nm

p f ðzÞdz � �f m (22)

with

Amj5

ð11d

0
wðz; mÞwðz; jÞuðzÞdz; (23a)

Bmj5

ð11d

0
wðz; jÞ @

@z
DvðzÞ

@

@z
wðz; mÞ

� �
dz; (23b)

where u(z) and wðz; mÞ are defined by (9) and (18), respectively. Given the functional form of u(z) and DvðzÞ,
and the fact that wðz; mÞ is a trigonometric function, see equation (18a), the integrations involved in both
Amj and Bmj can be analytically calculated (see Appendix B). However, depending on the functional form of
the velocity and diffusivity profiles, numerical quadratures can be employed to determine Amj and Bmj . The
system of ODEs (21) can be computed using any readily available numerical solver. Note that for a point
injection at (y, z) 5ð0; zoÞ, (22) reduces to wðzo; mÞ=

ffiffiffiffiffiffiffiffi
Nm

p
.

The functions �c mðyÞ, with m50; . . . ;1, are determined as the solution of the coupled ODE system (21) sub-
ject to (22). Finally, the concentration c(y, z) is obtained by truncating the series expansion (14b), e.g., m 5

ð0; . . . ;MmaxÞ. The choice of the truncation order Mmax in (14b) is based on the convergence rate of the con-
centration field. For the upcoming computational examples, we achieved a good convergence with a trun-
cation order of Mmax 5 50 in (14b). The dimensionless concentration converged to three significant digits
for downstream locations near the source and four significant digits at location far from the injection zone.
For multidimensional problems, the convergence rate can be improved if an eigenvalue reordering tech-
nique is used [e.g., Correa et al., 1997; de Barros and Cotta, 2007].

Given that the system of ODEs is coupled, see equation (21), a closed-form solution for �c mðyÞ is not avail-
able. Nonetheless, an approximate solution for �c mðyÞ can be derived by considering only the diagonal ele-
ments of Amj and Bmj in the solution. By setting m 5 j, the system of ODEs becomes decoupled,

Amm
d�c mðyÞ

dy
5Bmm�c mðyÞ; (24)

subject to �c mð0Þ5�f m, see (22). The solution of the decoupled system of ODEs is

�c mðyÞ5�f mexp
Bmm

Amm
y

� �
: (25)

Substituting (25) in (14b), we obtain the following approximate solution for the concentration field,

c y; zð Þ5 1
11d

ð11d

0
f ðzÞdz

� �
1
X1
m51

wðz; mÞ�f mffiffiffiffiffiffiffiffi
Nm

p exp
Bmm

Amm
y

� �
; (26)

where the first term represents the spatial average of the boundary condition at y 5 0, see equation (13).
The solution (26) is also known as the lowest-order solution [Cotta and €Ozişik, 1986].
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We emphasize that the concentra-
tion profile (14b) can be fully deter-
mined once the canopy layer
permeability k, the dispersion coeffi-
cient DvðzÞ, and the geometrical
properties of the channel are speci-
fied. In the following section, we
compare the prediction of our semi-
analytical solution with experimental
data and investigate the role of per-
meability in controlling the spread-
ing behavior of the solute cloud.

4. Results and Discussion

4.1. Comparison With
Experimental Data
To test the capability of the pro-
posed model, we compare the
semianalytical solution (14b) with

the experimental data collected by Ghisalberti and Nepf [2005]. The experiments were performed in a rect-
angular flume 0.467 m high (H1L50:467 m) and 0.38 m wide (B 5 0.38 m), with rigid vegetation 0.139 m
tall (H 5 0.139 m) planted at the bottom of the channel with a density a 5 8 m21 [Ghisalberti and Nepf,
2005]. A conservative tracer is injected at the top of the canopies with twelve needles of 9.0 mm diameter
each, and a concentration ranging between 120 and 250 g/L. The data include steady state measurements
of the (fully developed) mean velocity profile u(z) and concentration profiles c(y, z) at six selected locations
downstream (y150:19 m, y250:54 m, y350:92 m, y451:5 m, y552:5 m, y653:8 m) for run I [Ghisalberti and
Nepf, 2005, Table 1]. A sketch of the experimental setup along with the experimental conditions is shown in
Figure 1 and Table 1 of Ghisalberti and Nepf [2005].

In the following, we present the calibration and validation procedure which entails two steps: (i) estimation
of canopy layer effective permeability K (or equivalently k) for the calculation of the mean velocity profile

and (ii) estimation of the dispersion
coefficient Dv.
4.1.1. Flow Model Calibration and
Validation
While a complete discussion on esti-
mating canopy layer permeability can
be found in [Battiato and Rubol, 2014,
section 3], for completeness we pro-
vide an outline of the procedure here.
The inverse of the dimensionless per-
meability, k, can be estimated by a
one-point fit of the interfacial velocity,
uðz51Þ. The fitted k value is then used
to infer the full velocity profile for oth-
er values of z, other operating flow
conditions and/or channel slopes. An
alternative approach to estimate per-
meability is to employ geometrical fea-
tures of the stem arrangement, such as
mean leaf area index (LAI), canopy lay-
er porosity, etc. A discussion on the
functional relationship between per-
meability and canopy topology for

Figure 2. Mean velocity field ûðẑÞmeasured (empty circles) [Ghisalberti and Nepf,
2005, Run I] and predicted (solid line) for k51:90 [Battiato and Rubol, 2014]. The inset
shows a plot of u(z) (solid line) and the appropriately rescaled data. Adapted from Bat-
tiato and Rubol [2014].

Figure 3. Semianalytical predictions of the concentration profiles at selected loca-
tions superimposed to the data of Ghisalberti and Nepf [2005]. The dimensionless
concentration c	ðy; zÞ is defined as the dimensional concentration ĉ normalized
by the maximum concentration measured at ŷ 150:19 m (or y151:38) and ẑ5H
(or z 5 1). The following values of Dv have been employed in the simulations:
Dv 5 1.9 cm2/s at ŷ 150:19 m, Dv 5 3.0 cm2/s at ŷ 250:54 m, and Dv54.5 cm2/s for
the remaining sections.
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ordered arrays of cylinders is given in Battiato and Rubol [2014, equation (35), p. 10]. Extensions to random
arrays and more realistic canopy configurations is subject of current investigations. Permeability calibration
for run I leads to k51:90. Figure 2 shows a comparison between the velocity data collected by Ghisalberti
and Nepf [2004] and the predicted velocity profile (9) for run I [Battiato and Rubol, 2014]. We refer to Battiato
and Rubol [2014, section 3] for a detailed discussion and additional details on the flow model validation.
4.1.2. Transport Model Calibration and Validation
Once k and u(z) are determined, an estimate of the dispersion coefficient Dv is required to compute c(y, z) in
equation (14b). This is achieved by fitting (14b) with experimental concentration profiles. Validation of the
transport model is conducted by comparing the predicted concentration profile with an independent set of
data (e.g., concentration at different locations downstream of the injection point) on the same canopy system.

Notwithstanding the model’s capability to explicitly account for a spatially dependent Dv (e.g., decreasing
eddy diffusivity in proximity of the riverbed), here we show that fitting a constant value of Dv is sufficiently
accurate in reproducing the experimental concentration profiles through and over the vegetated layer for
dense canopies measured by Ghisalberti and Nepf [2005]. Figure 3 shows the comparison between the fitted
semianalytical model and the concentration data at six selected locations downstream of the injection
point. The model is able to capture the asymmetry of the concentrations profiles, as well as the decrease of
the concentration peak with increasing distance from the source. The fitted Dv increases from 1.9 cm2/s
close to the injection point (i.e., y1) to a constant value of 4.5 cm2/s for the remaining sections, located
downstream (y 
 y3), where the dispersion coefficient is expected to be constant [Fischer, 1979] (see details

in the caption of Figure 3). Once the
dispersion coefficient reaches a con-
stant value, the concentration profiles
located at sections further down-
stream can be predicted by our model
without any fitting. In the current anal-
ysis, we predicted the concentration
profiles at positions y > y3 where Dv

reached its constant value. Noticeably,
Dv in the far field is in perfect agree-
ment with the one measured by Ghi-
salberti and Nepf [2005] for the same
data set, which provides validation of
the calibrated model. The fitted Dv val-
ue in the far field corresponds to Sct

� 0:6 and is in good agreement with
available estimates of the turbulent
Schmidt number for vegetated flow.
Based on experimental data, several
works [e.g., Ghisalberti and Nepf, 2005,
and references therein] report the ratio
between mass and momentum trans-
fer to be less than unity for vegetated
flows, generally Sct � 0:5 for transport
in vegetated flows. Since the Sct is
defined as the ratio between the eddy
kinematic viscosity mT 5lT=q, with lT

given by (7), and the diffusivity DV, a
comparative estimate of the diffusivity
Dv can be obtained from Dv5mT=Sct .

4.2. Effect of Canopy Geometry
Next, we investigate the effect of cano-
py geometry on the concentration pro-
file. In the analysis that follows, the

Figure 4. Vertical concentration profile for different canopy permeability values
(a) close and (b) far from the injection source. Increasing values of k indicate dens-
er vegetation, i.e., less permeable canopies.
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solute is injected at the canopy height. As displayed in Figure 4, the asymmetry of the concentration profile
increases as the permeability of the vegetation layer decreases. This effect is noticeable when comparing
results between less dense (i.e., more permeable) and more dense canopies (k 5 1 and k 5 10, respectively).
This is in agreement with the experimental observations of transport over rigid canopies where the asym-
metry in the concentration profile increases with the canopy density [Ghisalberti and Nepf, 2005; Nepf and
Ghisalberti, 2008]. The strong velocity shear at the interface of the canopy leads to an increase in vertical
mass transfer (Figure 4). It is worth noticing that the decrease in the concentration peak as a result of either
distance from the source (Figure 3) or increased canopy density (Figure 4) is due to mechanical dispersion.
The mechanism that controls dispersion is the mass flux between the canopy and the free flow [Ling et al.,
2016]. Interfacial mass flux is enhanced by concentration differentials across the interface and controlled
either by the canopy density (which regulates the shear stress at the interface) or by the distance from the
injection point. As a result, plume dispersion is enhanced with increasing the distance from the source or
the canopy density. As observed in both Figures 4a and 4b, the permeability of the canopy has a significant
role in deviating the concentration profile from the typical Gaussian shape. For locations close to the solute
source (y 5 0.34), Figure 4a shows that the solute reaches the riverbed for k > 2. Furthermore, the peak con-
centration is approximately reduced by 40% as k changes from k 5 1 to k 5 2 (see Figure 4a). Figure 4b
shows the concentration profile further downstream from the injection zone y 5 1.69. The concentration
profiles depicted in Figure 4b illustrate that the distribution of solute inside the canopy layer is quite uni-
form for k > 1. This implies that the concentration profiles become more uniform as the Darcy number (Da)
decreases, see equation (8).

To further explore the flexibility of the semianalytical features of the integral transform solution, we
investigate the effect of canopy morphology on the vertical dispersion of the solute cloud. The vertical
spreading behavior is computed through the second central spatial moment, r, of the solute cloud:

rðyÞ5l2ðyÞ2½l1ðyÞ�2; (27)

where

l2ðyÞ5
1

loðyÞ

ð11d

0
z2cðy; zÞdz; (28a)

l1ðyÞ5
1

loðyÞ

ð11d

0
zcðy; zÞdz; (28b)

l0ðyÞ5
ð11d

0
cðy; zÞdz; (28c)

with l0 denoting the total resident mass at y integrated over the river depth. Substituting (14b) in (27) and
integrating over z leads to

l2ðyÞ5
ð11dÞ5=2

l0ðyÞ
1
3

�c0ðyÞ1
2
ffiffiffi
2
p

p2

X1
m51

ð21Þm

m2
�c mðyÞ

" #
; (29)

l1ðyÞ5
ð11dÞ3=2

l0ðyÞ
1ffiffiffi
2
p �c0ðyÞ1

1
p2

X1
m51

ð21Þm21
m2

� �
�c m yð Þ

( )
; (30)

l0ðyÞ5�c0ðyÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð11dÞ

p
; (31)

since sin ðmpÞ=mp! 1 as m! 0, and cos ðmpÞ5ð21Þm.

Figure 5 shows the longitudinal evolution of the second central moment (r) of the solute cloud for differ-
ent values of k. These results show the significance of the canopy permeability in controlling the vertical
growth rate of solute cloud until it reaches its asymptotic value. For low permeable vegetation structures
(i.e., larger k) corresponding to denser canopies, the velocity shear between the canopy layer and the free
layer is large [e.g., Ghisalberti and Nepf, 2005; Battiato and Rubol, 2014]. As observed in Figure 5 (see curve
for k 5 10), this large velocity shear augments vertical mass transfer and as a consequence, mixing along
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the river depth becomes more effi-
cient. On the contrary, the vertical
growth rate of the cloud’s spatial
moment is slower for k 5 1 (e.g., more
permeable canopy layer) when com-
pared to the case of k 5 10 (Figure 5).
The spatial moment analysis high-
lights the importance of considering
the canopy permeability in predictive
models. This is particularly important
because canopy permeability exerts a
critical control in vertical mixing rates
which has implication in nutrient
delivery in the riverbed and conse-
quently, the hyporheic zone [Tonina
and Buffington, 2009].

Next, we investigate the effect of cano-
py permeability in reducing the peak
concentration of the solute cloud. The

computation of the peak concentration is important in many applications since it provides information
related to (i) the corresponding risks to human health and the environment [Tartakovsky, 2013; de Barros
and Fiori, 2014] and (ii) the dilution potential of the hydrological system [Fiori, 2001; de Barros et al., 2015].
Figure 6 depicts the maximum concentration observed along the river depth at a fixed longitudinal position
downstream from the injection zone as a function of k. The maximum concentration (cmax) is evaluated as
follows:

cmaxðyÞ5 max
z2½0;11d�

cðy; zÞ: (32)

As shown in Figure 6, the maximum concentration reduces with increasing k. As the permeability of the
canopy layer decreases, a higher shear is generated in the velocity profile which augments vertical mass
transfer and therefore, the distribution of the concentration field. The results displayed in Figure 6 highlight
the role of the canopy in attenuating the peak concentration.

Finally, we compare the results from the semianalytical solution with the fully analytical approximate
(lowest-order) solution (26). The longitudinal concentration profiles are computed at z 5 0.68 (below canopy

height) and z 5 1 (at canopy height)
and are displayed in Figures 7a and 7b.
As expected, the concentration de-
creases with y at z 5 1 (location where
the tracer is continuously injected), see
Figure 7a. Below the canopy height,
Figure 7b shows that the concentra-
tion starts to increase and then
reduces with y. Results displayed in
Figure 7 are reported for k 5 1 and
k 5 2. As shown in Figure 7, the
approximate solution (solid lines) cap-
tures the overall behavior of the con-
centration profile reasonably well. At
the canopy height (z 5 1), the approxi-
mate solution (26) overestimates the
concentration values (see Figure 7b).
Physically, this implies that mixing is
underestimated with the lowest-order

Figure 5. Vertical second central spatial moment r of the solute cloud for differ-
ent value of k as a function of dimensionless longitudinal distance y. Increasing
values of k indicate denser vegetation, i.e., less permeable canopies.

Figure 6. Peak concentration versus k. Results obtained at different positions
downstream of the source. Increasing values of k indicate denser vegetation, i.e.,
less permeable canopies.
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solution. With the exception of y val-
ues in the vicinity of the source, similar
behavior is observed below the cano-
py height (z 5 0.68) in Figure 7a. The
performance of the approximate solu-
tion deteriorates as k increases (e.g.,
the permeability of the canopy
decreases). For increasing k, the off-
diagonal terms of Amj and Bmj start to
play a significant role in capturing the
effects induced by the strong shear.
Nevertheless, our results show that the
approximate solution captures the
main transport behavior. As shown in
Figure 7, the approximate expression
presented in equation (26) favors sim-
plicity however it compromises the
accuracy in the solution for the con-
centration field.

5. Summary and Conclusions

Vegetated channels exhibit unique
flow and transport features compared
to their nonvegetated counterparts,
including reduction of near-bed turbu-
lent stresses, increase in riverbank sta-
bility and nutrients retention, and
control of solute transfer between the
free and the canopy flow, just to men-
tion a few. Such mechanisms are con-
trolled by the canopy structure, as
demonstrated in a number of experi-
mental studies. Under the assumption
that the vegetation layer can be repre-

sented as a porous medium, fully characterized by its effective properties (i.e., porosity and permeability),
we propose a modeling framework to investigate the impact of vegetation on solute transport in an open
channel. Starting from the two-domain approach to model flow over a vegetated layer introduced by Bat-
tiato and Rubol [2014], we define an advection-dispersion equation (ADE) to model steady state solute
transport in a vegetated channel under fully developed turbulent flow. By means of the Generalized Integral
Transform Technique [Cotta, 1993], we obtain a semianalytical solution for the concentration field in terms
of the canopy layer effective properties. The derived semianalytical solution is computationally efficient and
free of discretization errors associated with numerical methods. Our results indicate that the canopy layer
has a major role in controlling solute transport, including the asymmetry of the concentration profile, the
magnitude of the peak concentration and the vertical dispersion growth rates of the solute cloud. The mod-
el predictions are in good agreement with the experimental data collected by Ghisalberti and Nepf [2005].
The analysis indicates the potential of combining the reduced model with integral transform solutions to
predict solute transport. Extensions to reactive transport and flexible canopies are subject of current investi-
gations.

Appendix A: Integral Transform Method

Inserting the inverse formula (14b) in advective term of (20) leads to

Figure 7. Longitudinal concentration profile obtained using the semianalytical
solution and the approximate (lowest-order) solution (26). Concentration profiles
shown at (a) z 5 0.68 (below the canopy height) and (b) z 5 1 (at the canopy
height) for different values of k. Increasing values of k indicate denser vegetation,
i.e., less permeable canopies.
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Iadv5
1ffiffiffiffiffiffiffiffi
Nm

p ð11d

0
w z; mð Þu zð Þ @

@y

X1
j50

w z; jð Þffiffiffiffiffiffi
N j

p �c j yð Þ
( )

dz

5
X1
j50

d�c j yð Þ
dy

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NmN j

p ð11d

0
u zð Þw z; mð Þw z; jð Þdz

5
X1
j50

Amjffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NmN j

p d�c j yð Þ
dy

(A1)

where Amj is defined in (23a). Similarly, inserting (14b) in the diffusive term of equation (20) gives

Idiff5

ð11d

0

wðz; mÞffiffiffiffiffiffiffiffi
Nm

p @

@z
DvðzÞ

X1
j50

�c jðyÞffiffiffiffiffiffi
N j

p @wðz; jÞ
@z

" #
dz

5
X1
j50

�c jðyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NmN j

p ð11d

0
wðz; mÞ @

@z
DvðzÞ

@wðz; jÞ
@z

� �
dz

5
X1
j50

Bmjffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NmN j

p �c jðyÞ

(A2)

where Bmj is defined by (23b). Additional details can be found in de Barros and Cotta [2007]. The coefficients
Amj and Bmj can be determined for any given velocity profile u(z) and dispersion coefficient DvðzÞ, once the
auxiliary problem is chosen. For our work and the velocity profile adopted, we derived full symbolic expres-
sions for Amj and Bmj , reported in Appendix B. In order to gain more flexibility, numerical integrations can
be used to evaluate Amj and Bmj .

Appendix B: Symbolic Expressions for the CoefficientsAmj and Bmj

Computation of the coefficients Amj and Bmj can be achieved through numerical and analytical integration
techniques. In this appendix, we provide the symbolic expressions for both Amj and Bmj . These symbolic
expressions are valid for the velocity profile u(z) defined (9) and a constant DvðzÞ. They are

Amj5
ðd11Þe2k

2k2 ðF 1;mj1F 2;mj1F 3;mj1F 4;mjÞ; z 2 ð0; 1�;

Amj5
d11

2pði2jÞði1jÞ ðG1;mj2G2;mj1G3;mjÞ; z 2 ð1; 11dÞ;
(B1)

where

F 1;mj5

Cðd11Þ e2k21
� 	

k3cos
pðm2jÞ

d11

� �
ðd11Þ2k21p2ðm2jÞ2

; (B2a)

F 2;mj5

Cðd11Þ e2k21
� 	

k3cos pðj1mÞ
d11

� �
ðd11Þ2k21p2ðj1mÞ2

; (B2b)

F 3;mj5

eksin
pðm2jÞ

d11

� �
2p2Ck2ðm2jÞ2cosh ðkÞ1ðd11Þ2k21p2ðm2jÞ2

 �

pðd11Þ2k2ðm2jÞ1p3ðm2jÞ3
; (B2c)

F 4;mj5

eksin pðj1mÞ
d11

� �
2p2Ck2ðj1mÞ2cosh ðkÞ1ðd11Þ2k21p2ðj1mÞ2
h i

pðd11Þ2k2ðj1mÞ1p3ðj1mÞ3
; (B2d)

with C defined in (10) and

G1;mj52½dln ðd11Þ1U�½msin ðpmÞcos ðpjÞ2jcos ðpmÞsin ðpjÞ�; (B3a)

G2;mj52mUsin
pm
d11


 �
cos

pj
d11

� �
12jUcos

pm
d11


 �
sin

pj
d11

� �
; (B3b)
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G3;mj5d ðm1jÞSi
ðm2jÞp

d11

� �
1ðm2jÞSi

ðm1jÞp
d11

� �
1ð2m2jÞSi ðm2j½ Þp�1ðj2mÞSi½ðm1jÞp�

� 

: (B3c)

In (B3), Si denotes the sine integral

SiðfÞ �
ðf

0

sin ðsÞ
s

ds: (B4)

In the limit of j ! m, equation (B1) becomes

Amm5
Wmmðd11Þe2k

2k2 ; z 2 ð0; 1�;

Amm5
Hmm

4pm
; z 2 ð1; 11dÞ;

(B5)

with

Wmm5
C e2k21
� 	

k

d11
1

Cðd11Þ e2k21
� 	

k3

ðd11Þ2k214p2m2
cos

2pm
d11

� �

1eksin
2pm
d11

� � 8p2Ck2m2cosh k1ðd11Þ2k214p2m2

 �

8p3m312pðd11Þ2k2m
1

ek

d11
;

Hmm5ðd11Þ sin ð2pmÞ½dln ðd11Þ1U�2Usin
2pm
d11

� �� 

2dðd11Þ Sið2mpÞ2Si

2mp
d11

� �� �

12pdm½ðd11Þln ðd11Þ1U2d�:

(B6)

Assuming DvðzÞ5Dv 5 Const, we obtain the following expression

Bmj52
Dv m½jsin ðpjÞsin ðpmÞ1mcos ðpjÞcos ðpmÞ2m�

ðj2mÞðj1mÞ : (B7)

Expression (B7) has a singularity when j ! m. Solving (B7) in the limit j ! m, we get

Bmm52
1
2

Dv sin 2ðpmÞ: (B8)
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