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Abstract Numerical simulations of pore-scale flow and transport in natural sediments require the
knowledge of pore-space topology. Limited resolution of X-ray tomography is often insufficient to fully
characterize pore-space structure within fine-grained regions. Single and multilevel threshold-based seg-
mentation approaches are customarily employed to identify solid, pore and porous-solid regions by
means of grey intensity thresholds. While the choice of cutoff thresholds is often arbitrary, it dramatically
affects the effective properties and the dynamical response of the reconstructed porous structure. We
propose an algorithm of downscaling, i.e., the process of increasing image resolution, followed by seg-
mentation, i.e., the identification of different phases, to reconstruct the unresolved pore-space from XCT
images of natural geological porous media. The method, applicable to moderately unresolved, chemically
homogeneous granular media, is based on a map between local pixel porosity and pore size that does
not rely on the definition of arbitrary thresholds and it allows to generate a high-resolution binary image
of the porous medium from poorly resolved grey-scale images. First, we validate the method on synthetic
unresolved images and compare their known pore-space distribution with the extracted one. Then, we
consider a synthetic porous medium and compare the pore size distribution, conductivity, and tortuosity
between the original and the reconstructed structures. Finally, we apply the method to extract the pore-
space distribution from unresolved XCT images of two natural sediment columns and use it (i) to parame-
trize a capillary-bundle model and (ii) to estimate the hydraulic conductivity by matching breakthrough
behavior of passive solute transport.

1. Introduction

Accurate reconstruction of the 3-D geometry is critical to model single (Ling et al., 2016; Scheibe et al.,
2015a) and multiphase (Ling et al., 2017) pore-scale fluid flow and mass transport through highly hetero-
geneous natural porous media. While only a limited number of laboratory prototypes of multiscale imag-
ing techniques exist (Andr€a et al., 2013a, 2013b; Prodanović et al., 2014; Sok et al., 2010; Wildenschild &
Sheppard, 2013), it is important to fully characterize the geometrical information across scales in an inte-
grated fashion since flow and transport processes are often coupled across length scales that span differ-
ent orders of magnitude (Arunachalam et al., 2015; Battiato, 2014; Battiato et al., 2009; Battiato &
Tartakovsky, 2011; Boso & Battiato, 2013; Korneev & Battiato, 2016; Yousefzadeh & Battiato, 2017). One of
the main difficulties lies in the uncertainty produced during the imaging experiment. The sources of
uncertainty may include photon shot-noise, distortion of the optical system, low spatial resolution
(Scheibe et al., 2015b; Soulaine et al., 2016), low sensitivity, and others (Boas & Fleischmann, 2012). These
sources, when combined together, can significantly decrease image quality. In particular, subresolution
porosity can lower the accuracy of flow and transport model predictions, regardless of the accuracy of
the numerical solver (Boas & Fleischmann, 2012; Scheibe et al., 2015b; Soulaine et al., 2016). Prohibitive
costs associated with techniques designed to improve image quality, such as adaptive optics (Davies &
Kasper, 2012), sophisticated detectors and emitters (Wildenschild & Sheppard, 2013), and multiscale
imaging techniques (Sok et al., 2010), limit their deployment in routine industrial, geosciences, and
hydrological applications.
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An alternative and less expensive approach is to mathematically postprocess the imaging data set. Recently,
methods of noise reduction using filters (such as Gauss filter, nonlinear diffusion filter, and shock filter) have
been successfully applied to digital images (Kaestner et al., 2008). Nevertheless, the problem of unresolved
porosity, known as the partial volume effect (PVE), is more difficult to resolve. PVE occurs when the smallest
pore spaces of a sample are below the device resolution and the information about subvoxel variations in
chemical composition and/or phase is averaged over a single voxel. If the PVE voxel includes both solid and
void phases it is usually referred to as a porous-solid phase (Scheibe et al., 2015b). The image intensity of a
voxel with porous-solid phase contains information about subresolution porosity and pore-space geometry
that cannot be explicitly resolved.

Reconstruction of a digital porous structure where direct numerical simulations can be performed or
physical multiscale models parametrized requires a preliminary segmentation step, i.e., the identification
of different phases (pore, solid, porous solid, etc.) from the original image. Binary segmentation
approaches neglect the presence of the porous-solid phase and reconstruct the synthetic pore structure
by imposing a threshold on the intensity histogram to separate solid phase from pore space (Lindquist
et al., 1996). Numerous studies have demonstrated the dramatic impact that such an approximation has
on characterization of the overall conductivity as well as the dynamical response of natural porous media,
e.g., Soulaine et al. (2016). To overcome this challenge, ternary segmentation approaches have been
employed where two intensity threshold values have to be determined to distinguish among solid,
porous-solid, and void phases. Yet the choice of thresholds can be ill defined as the boundaries between
phases may not be clearly detectable on the image and the intensity histogram (Iassonov et al., 2009;
Scheibe et al., 2015b; Soulaine et al., 2016; Wildenschild & Sheppard, 2013). Scheibe et al. (2015b) show
how breakthrough curves of passive transport in a reconstructed geologic porous medium are greatly
affected by the type of segmentation and threshold values employed. Once the three phases have been
identified, the porous-solid phase is generally assumed spatially homogenous and its conductivity esti-
mated through empirical relationships, such as the Carman-Kozeny equation, that are not universal and
may not work for a highly heterogeneous sample (Iassonov et al., 2009; Scheibe et al., 2015b; Soulaine
et al., 2016; Wildenschild & Sheppard, 2013). Yet, an accurate knowledge of the pore geometry is essential
to calculate hydraulic conductivity, hydrodynamic dispersion, or effective surface reaction rates (Mehmani
& Tchelepi, 2017; Yang et al., 2016; Yoon et al., 2015) in at-scale and multiscale models (Battiato, 2016; Bat-
tiato et al., 2011; Sun et al., 2012; Yousefzadeh & Battiato, 2017). The geometry of the porous-solid phase
can also be recovered by stochastic reconstruction (Gerke et al., 2015). This approach does not require a
threshold value or empirical parameters, but it is computationally intensive since it is based on the solu-
tion of a multidimensional minimization problem (Mohebi et al., 2009; Mohebi & Fieguth, 2008; Wildens-
child & Sheppard, 2013). While relatively new to geosciences, the problem of subresolution
reconstruction remains a challenging step in tomographic image processing and has long been a goal in
the analysis of medical images such as brain MRI (Bultreys et al., 2014; Hwang & Felix, 2002; Wildenschild
& Sheppard, 2013, and references therein). More detailed reviews of modern image processing algorithms
in geosciences and hydrology can be found in Bultreys et al. (2016), Wildenschild and Sheppard (2013)
and Kaestner et al. (2008).

Here we propose and validate an algorithm of downscaling followed by segmentation to extract informa-
tion about pore geometry from unresolved grey-scale images of a highly heterogeneous granular sample,
which we will refer to as downscaling-based segmentation (section 2). The downscaling step consists in
increasing the image resolution, while the segmentation step involves the identification of different
phases, e.g., solid and void. In the absence of a porous-solid phase, the segmentation step corresponds to
binarizing the image. The central element of the approach is a continuous mapping of the low-resolution
pixel intensity (section 2.1) into the pore space of a high-resolution binary image (section 2.2), followed
by subsequent segmentation of the resulting pore space into interconnected bounded regions. The latter
step allows one to extract relevant pore-scale statistics and spatial distribution of pores. Unlike the com-
monly used threshold-based segmentation which ignores subresolution information (Iassonov et al.,
2009), the mapping applied here retains more than one bit information from a voxel by means of postu-
lating a morphological relationship between the local pixel porosity, i.e., the average volume of the pore
in any given pixel, and the characteristic size of the pore space at that location. The algorithm has a sim-
ple formulation and high computational efficiency for moderately unresolved images and chemically
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homogeneous well-packed granular samples. We first test the method using a poorly resolved synthetic
image with known pore size distribution. To obtain a low-resolution grey-scale image, we generate a syn-
thetic high-resolution binary image of a heterogeneous porous medium and upscale it using volume
averaging. We also add Gaussian noise to the low-resolution image. In section 3, we apply the downscal-
ing algorithm followed by segmentation to extract the reconstructed pore-space distribution. We also
compare the extracted pore-space distribution from the downscaling-based and the threshold-based seg-
mentations with the original distribution. The comparison shows that the downscaling-based approach is
more accurate than the threshold-based method. Finally, we consider two examples where we apply the
model to calculate effective parameters in two three-dimensional media. In the first example, we deter-
mine the effective conductivity of a synthetically generated porous medium and compare both its pore-
scale statistics, tortuosity and conductivity with the reconstructed one (section 3.1). In the second exam-
ple (section 3.2), we demonstrate how the subresolution information extracted by the algorithm (e.g.,
pore size distribution) can be employed to parametrize upscaled flow and transport models. Specifically,
we apply the downscaling-based segmentation approach to poorly resolved XCT images of two natural
geological samples (Zachara et al., 2013). By utilizing the extracted geometry to parametrize a capillary-
bundle flow model, we are able estimate the hydraulic conductivity and solute transport behavior of the
samples. The comparison with experimental results shows that the method better models the unresolved
porosity and its impact on macroscopic behavior than a segmentation-based approach. We provide a
summary of the main results in section 4.

2. Algorithm

XCT scanning is a widely used technique for nondestructive and noninvasive three-dimensional (3-D) imag-
ing of geological samples (Bultreys et al., 2016; Wildenschild & Sheppard, 2013). The output of the XCT
experiment provides a 3-D distribution of the relative attenuation of the scattered X-ray beam, where the
intensity depends on the distribution of various phases (solid or void) and mineral composition across the
sample. Here we focus on chemically homogeneous samples. Generalizations of the approach to chemically
heterogeneous samples are subject of current investigations.

2.1. Step 1: Intensity-Porosity Mapping
We define the result of an XCT measurement as a stack S of 2-D images
I k , S5 I k ; k51; . . . ;Nkf g, where I k5 ði; j; kÞ; i51; . . . ;Ni;f j51; . . . ;

Njg is a tagged image file format (TIFF), Nk is the number of images,
Ni3Nj the image size and vijk 2 ½0; 1� is voxel (i, j, k)’s intensity (see
Figure 1). The rescaled voxel size is 1313Dz, where Dz is the dis-
tance between two contiguous 2-D images I k and I k11, and the cor-
responding 2-D pixel size in the xy-plane is 1 3 1. Since tomographic
images are obtained slice wise (Lindquist et al., 1996), the method is
performed on individual slices. We process stacks of 2-D images, and
we will refer to 2-D ‘‘pixels’’ rather than 3-D voxels. Pixel intensity V is
a Gaussian random process in the limit of large photon count (Lei,
2012), i.e.,

fVðvÞ5asfGðv; vs; r
2
s Þ1

XNp

p51

apfGðv; vp; r
2
pÞ1av fGðv; vv; r

2
vÞ; (1)

where fVðvÞ : 5PrðV5vÞ and fGðv; li;r
2
i Þ5ð2r2

i pÞ
21=2e2ðv2liÞ2=2r2

i is a
Gaussian distribution with mean li and variance r2

i ; i5fs; v; pg.

The first step of the algorithm consists in mapping the image grey
scale into local (pixel) porosity values. If the signal-to-noise ratio is
high enough, the solid and void phases can be identified as maxima
of the data intensity histogram: this is achieved by fitting two Gauss-
ian distributions to the left and right maxima of the intensity histo-
gram to capture the mean grey intensity vs and vv associated with the

Figure 1. Representation of a tomographic 3-D image S, where the voxel is
identified by an array of three indeces (i, j, k), representing the voxel coordi-
nates in the x, y, and z direction, respectively, and its intensity is vijk. The image
S can be represented as a collection of 2-D images Ik in the xy-plane.
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solid and pore phases. Otherwise, linear regression between ðvv2vsÞ and vs or deconvolution of the histo-
gram (Fister et al., 2007) can be employed to determine vv and vs. Once vv and vs are determined, the pixel
(i, j)’s porosity /ij of the original image I can be determined through the linear map,

/ij vij
� �

5
vij2vs

vv2vs
; (2)

similar to the definition of Hounsfield units, and other linear mappings (Sok et al., 2010). Equation (2)
ensures that /ðvsÞ50 in the solid phase and /ðvvÞ51 in the void phase. The porosity distribution is Gauss-
ian, i.e.,

fU /ð Þ5asfG /; 0; r̂2
s

� �
1
XNp

p51

apfG /; /p; r̂
2
p

� �
1av fG /; 1; r̂2

v

� �
; (3)

and its expected value is

�/5
XNp

p51

ap/p1av5
1

NiNj

XNi

i51

XNj

j51

/ij: (4)

This approach provides the porosity distribution of each image, does not require an arbitrary threshold for
phases’ identification, and allows one to attribute to the porous-solid phase spatially heterogeneous proper-
ties (i.e., porosity) depending on the pixel local intensity. We emphasize that equation (4) provides a fit-free
estimate of the porosity that can be calculated directly from the image and compared with the experimen-
tal value for validation.
2.1.1. Synthetic Image Generation
We test the first step of the method on a synthetically generated low-resolution image (Figure 2b) with
known underlying pore-space distribution (Figure 2a). The low-resolution grey-scale image of size 400
3 400 pixels (Figure 2b) is obtained by adding a Gaussian noise with zero mean and 0.035 standard
deviation to the spatially upscaled synthetic high-resolution binary image 4000 3 4000 pixels in size
(Figure 2a). The noise standard deviation was chosen such that the final pixel intensity histogram of
the low-resolution image in Figure 2c would appear as realistic as possible (see e.g., histogram of a real
XCT image in Figure 18). The total porosity of the high-resolution image is /50:253. In order to ensure
that the low-resolution image contains unresolved porosity, its resolution (i.e., its pixel size) should be
coarser than the average pore width �a of the original (high-resolution) synthetic image. The average
pore size can be determined through segmentation of the image in Figure 2a. We employ a segmenta-
tion approach known as connected-component labeling. It can be performed utilizing fast and efficient
algorithms (Samet & Tamminen, 1988). In such a method, the void space of the binary image is seg-
mented in interconnected regions bounded by the solid phase, where each connected region is here
referred to as pore. An interconnected region is defined as a two-dimensional area (or three-
dimensional volume) such that any arbitrary pair of points within the region can always be connected
by a continuous curve. Even though such a segmentation significantly overestimates effective pore
size in loosely packed porous media where the void spaces may merge into large connected pores (see
Figure 3a), the approach provides a good approximation of pore-space distribution for well-packed
granular (geologic) porous media (see Figure 3b). We emphasize that using this segmentation
approach, a pore may be a nonconvex void space (i.e., for every pair of points within a pore, every point
on the straight line segment that joins the pair of points may not be within a void space). One such
example is shown in Figure 3b, where one of the pores, i.e., the interconnected region in the top-right
corner, contains one solid grain in it.

After segmentation (Figure 3c), the average pore width �a of the high-resolution image is determined as
�a5�ap54:0, the arithmetic average of the pores’ characteristic width ap5

ffiffiffiffiffi
Sp

p
, where Sp is the pore area and

the subscript p is the pore index. The resolution of the low-resolution image is set to 10, 2.5 times coarser
than the average pore width �a of the original synthetic image.
2.1.2. Gaussian Fit and Intensity-Porosity Map
In Figure 2c, we show the intensity histogram of the synthetically generated low-resolution image with
known underlying pore-space distribution. The intensities associated with the solid and void phases vs and
vv, respectively, are determined by fitting two Gaussians to the left and right maxima of the intensity
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Figure 3. Connected-component labeling segmentation for a (a) loosely and (b) closely packed synthetic porous medium, and (c) the high-resolution synthetic
image of Figure 2a. In all figures, the black corresponds to the solid phase. The ‘‘pores’’ determined through connected-component labeling segmentation are rep-
resented in different colors. Such a segmentation algorithm overestimates the characteristic pore size in loosely packed porous media (Figure 3a), while it provides
an accurate estimate of the pore size distribution for closely packed porous media (Figure 3b). (c) Segmentation result on the synthetic image of Figure 2a. Differ-
ent colors identify different pores p (or connected nonconvex void regions) of area Sp and characteristic size ap5

ffiffiffiffiffi
Sp

p
.

Figure 2. (a) Original high-resolution synthetic binary image (4,000 3 4,000 pixels). (b) Upscaled low-resolution image
with Gaussian noise (400 3 400 pixels). (c) Intensity histogram of image in Figure 2b (black dots) with Gaussian fits (solid
lines) to identify the grey scale intensities vs and vv associated with the solid (solid blue line) and void phases (solid yellow
line), respectively.
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histogram as shown in Figure 2c. The fitted intensity values are vs 5 0.22 and vv 5 0.864. The local pixel
porosity of the low-resolution image is then determined using the intensity-porosity relation (2). The esti-
mated porosity using equation (2) is �/50:225 and compares well with the porosity /50:253 of the original
image.

2.2. Step 2: Downscaling-Based Segmentation
Once the pixel porosity of the image is estimated, the spatial distribution of void and solid phases must be
reconstructed in a binary image such that direct numerical simulations can be run at the pore-scale. This
requires a downscaling step to map local pixel porosity onto a binary higher-resolution image. Since the
underlying pore geometry of the solid porous phase is unknown, a model is necessary to map local pixel
porosity onto an equivalent (binary) distribution of void and solid phases at any given pixel. In the following,
we propose two different models used to reconstruct the pore structure (i.e., the spatial distribution of voids
and solids) within each pixel. In both models, we assume that each pixel contains a single pore whose size
depends only on the pixel intensity as described in Figure 4. This assumption is deemed reasonable for chemi-
cally homogeneous granular media and a moderately unresolved image. While a downscaling step cannot
capture the full topological information of the subpixel pore structure, the downscaling step can be designed
to extract at least part of such information (e.g., the characteristic pore size of subresolution porosity).

Beyond running direct numerical simulations, the downscaled high-resolution image can be employed (i) to
parametrize transport models as shown in section 3, (ii) to estimate the porous medium conductivity,
including that associated with the porous-solid phase, without relying on empirical relationships, e.g.,
Carman-Kozeny equation and/or (iii) to perform numerical upscaling after the porosity map (Step 1 of the
algorithm), (iv) to analyze the pore-space topology and estimate, e.g., pore connectivity (Bernabe et al.,
2010; Lindquist et al., 1996).
2.2.1. Physical Subpixel Pore Model
We assume that any arbitrary pixel (i, j) (of dimensionless area 1 3 1) contains a square pore of area w2

ij located
at the center of the pixel (see Figure 4a). Since the pixel intensity vij depends linearly on the mass density and,
consequently, on the pore area w2

ij , the following map, here referred to as physical model, can be defined:

wij /ij; d
� �

5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11dð Þ/ij

q
; /ij > 0;

wij /ij

� �
50; /ij � 0:

8<
: (5)

Equation (5) guarantees that wij 5 0 when vij5vs, and wij511d when vij5vv , where the rescaled pixel width
is 1, and d is a fitting parameter, determined by matching the total porosity �/5h/iji of the original image

Figure 4. (a) Schematic representation of the downscaling step where (left) the pixel porosity /ij is mapped into (right) a square pore of size wij3wij , i.e., a binary
distribution of voids (in white) and solid (in black) phases at that given pixel. Pixels with porosity equal to 1 and 0 correspond to an entirely void (white) or solid
(black) pixel. (b, c) Example of downscaling from (b) a pixel porosity distribution to (c) a binary (black and white) image, where void pixels may overlap and merge
to form larger connected regions.
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(as calculated from Step 1) with the total porosity �/
�

of the binary
image. The parameter d should ensure that neighboring subpixel
pores form a connected region when the binary image is seg-
mented. This is critical to preserve connectivity of large pores after
the downscaling step. Yet, it is easy to observe that, in the physical
model, �/

�
5ð11dÞh/iji5ð11dÞ�/, i.e., d � 0. As a result, neighboring

subpixel pores may not merge into interconnected bounded void
spaces in presence of noise and the downscaled image may lose
connectivity. To overcome this problem, a morphological model is
introduced.
2.2.2. Morphological Subpixel Pore Model
The aim of the morphological model is to smooth the random intensity
variations by overestimating the subpixel pore width inside the void
spaces where porosity is close to 1 (see Figure 5). Under the assumption
that the subpixel pore width wij linearly depends on the pixel porosity

/ij , the morphological subpixel model can be expressed as

wij /ij; d
� �

5 11dð Þ/ij; /ij > 0;

wij /ij

� �
50; /ij � 0;

(
(6)

where the pore width is 0 for the solid phase vs, and 11d for the void phase vv. This corresponds to a mor-
phological dilation (Aoud, 2014) of the void space compared to the physical model. While the standard dila-
tion algorithm smoothes small scale variations of the geometry and thus preserves the connectivity, it does
not preserve the porosity. In the morphological subpixel model the fitting parameter d is, again, determined
by matching �/5h/iji, the total porosity of the original image with the total porosity of the binary image
�/
�

dð Þ5 11dð Þ2h/2
iji, i.e., d5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h/iji=h/2

iji
q

21 6¼ 0.
2.2.2.1. Validation on a Synthetic Image
We test the downscaling by means of the physical, Figure 6a, and morphological model, Figure 6b, on the
synthetic image in Figure 2b (with underlying known pore structure provided in Figure 6a) where white
and black pixels correspond to voids and solids, respectively, and grey to a solid porous phase with
0 < / < 1. After downscaling, we segment the generated binary images to highlight the connected pore
space. We emphasize that the physical and morphological models map a real number (porosity) into a real
number (pore width). Once the pore width associated with each pixel is known, the 2-D array of pore widths
(real numbers) is discretized to obtain a 2-D binary array (binary numbers). The increase in resolution origi-
nates during this discretization step. In this example, and elsewhere, we use a relatively high resolution to

Figure 5. The solid black curve shows a pixel intensity histogram, where the
left maximum vs corresponds to the solid phase and the right maximum vv to
the void phase. The dashed blue curve shows the physical subpixel pore model
(see equation (5)), and the solid yellow line shows the morphological model
(see equation (6)).

Figure 6. Segmentation results from a (a) downscaling-based physical model, (b) downscaling-based morphological model, and (c) threshold-based method, Dif-
ferent colors represent individual pores.
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be able to explicitly resolve boundaries between neighboring subpixel
pores. Then, we calculate the pore-space statistics, i.e., the distribution
of the pore-space characteristic size and its average. For comparison,
we also apply a standard threshold-based segmentation approach
(Figure 6c) where the threshold value is selected such that the total
porosity of the resulting binary image matches the porosity of the
low-resolution image. The average pore size after segmentation is
�a54:5 pixel, �a54:3 pixel, and �a517:5 pixel for the physical, the mor-
phological, and the threshold-based segmentation approaches,
respectively. The morphological model provides the best estimate of
the true pore size, �a54. The results of the three approaches are
shown in Figure 6. In Figure 7, we compare the pore size histogram
obtained from segmenting the original high-resolution synthetic
binary image (solid black histogram) with the pore size histograms
of the binary images obtained from a (i) downscaling-based seg-
mentation with the physical and morphological models (Figures 7a
and 7b, respectively) and (ii) a threshold-based segmentation (Figure
7c). The histogram comparison reveals that downscaling using the
morphological model (6) gives the best approximation of the origi-
nal histogram. The physical model (5) underestimates the number of
pores of intermediate size, e.g., pores with width between 50 (au)
and 100 (au), by a factor of 10. Threshold-based segmentation
underestimates the number of the smallest pores by factor of 10.
Once the statistics of the pore space are extracted, they can be used
to parametrize flow and transport models as demonstrated in the
following section.

Finally, we test how both models preserve connectivity of large pores
(i.e., pores above the resolution threshold). We generate a synthetic
high-resolution binary image with a single large pore embedded in a
fine-grained porous matrix (see Figure 8a). The binary image is first
upscaled using volume averaging (see Figure 8b). We then add a
Gaussian random variable with zero mean to the upscaled (low-reso-
lution grey scale) image to model noise (see Figure 8c). We use four
different values of the standard deviation ranging from 0.02 to 0.1.
We scale the intensity of the low-resolution image such that the maxi-
mum corresponding to the void phase (white) is located at 1 and that
of the solid phase (black) at 0. Finally, we extract the large pore from
the low-resolution image using the downscaling method with physical
and morphological models (see example in Figure 9). For each set of
parameters, we run the simulations 1,000 times and count the number

of successful extractions. The results are listed in Table 1. Our results show that the morphological model
always leads to 100% successful extractions of the large pore, while the extraction probability for the physi-
cal model depends on the noise standard deviation r (specifically, extraction probability increases as r
decreases, as expected). This can be explained as follows: the morphological model, compared to the physi-
cal model, overestimates the size of the pores for values of porosity approaching 1, and underestimates the
size of the pores when porosity approaches 0, as shown in Figure 4. This helps preserving intra-slice connectiv-
ity of large pores, while enhancing separation of neighboring small pores.

In the following section, we present two applications to 3-D porous media.

3. Example Applications

In the following, we present two examples where we use the downscaling-based segmentation in conjunc-
tion with (pore-scale and macroscale) flow (and transport) models to estimate effective properties of the

Figure 7. Histograms of pore width extracted after segmenting the low-
resolution image 2(b) with different methods (red bins): (a) downscaling-based
segmentation through the physical model, (b) downscaling-based segmenta-
tion through the morphological model, and (c) threshold-based segmentation.
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reconstructed porous medium. In the first example (section 3.1), we consider a synthetically generated 3-D
porous medium. After image processing, we reconstruct the pore-scale topology based on the downscaling
approach, and then use pore-scale simulations on the original and reconstructed geometries to calculate
the sample effective conductivity and tortuosity. In the second example (section 3.2), we show how the
pore-scale distribution extracted after image processing from XCT scans of two realistic porous media can
be used to parametrize an upscaled (capillary-bundle) model. We would like to emphasize that the purpose
of these examples is to show how the information extracted by the downscaling-based segmentation can
be used either to run direct numerical simulations on the reconstructed geometries (Example 1) and/or to
improve the parametrization of simplified (upscaled) models, if direct numerical simulations are not an
option due to high computational burden (Example 2).

3.1. Example 1: Synthetic Porous Medium
We consider a 3-D synthetic medium, constituted of random curved channels, with variable cross sections
along the channel’s length, connecting the top and the bottom of the domain. The 3-D geometry of a chan-
nel i is fully described by the coordinates of the channel’s center xi zð Þ; yi zð Þf g in the xy-plane and its radius
ri zð Þ as

Figure 8. High-resolution synthetic binary image of size 720 3 580 pixels with a single large pore on the background consisting of small pores, where white is the
void phase, black is the solid. (b) Low-resolution image of size 72 3 58 obtained by the volume averaging. (c) Upscaled image with the additive Gaussian noise
which has with zero mean value and 0.1 the standard deviation.

Figure 9. (a) Example of how the connectivity of the large pore is not preserved after the downscaling. (b) The morpho-
logical dilation restores the connectivity of the large pore, but changes the porosity. On both images, the black corre-
sponds to the solid phase and white to the void.
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xi zð Þ; yi zð Þf g5fi zð Þ;

x2xið Þ21 y2yið Þ2 < ri zð Þ2; z 2 0:1½ �;
(7)

where x, y, and z are the horizontal and the vertical coordinates, and fi

zð Þ is a B�ezier curve generated from a set of random points. Specifi-
cally, we generate 300 random B�ezier curves for the horizontal coordi-
nates fi zð Þ; i51; . . . ; 300f g and 300 curves for the radius

ri zð Þ; i51; . . . ; 300f g. Using the constrains (7) and the generated
curves, we create 201 black and white images with dimensions 250 3

250 pixels. The generated set of 25032503201 pixels represents a 3-
D porous medium with vertical and horizontal heterogeneities. An

example image is shown in Figure 10 and the volumetric render of the 3-D porous structure in Figure 11.
The channels average diameter across the whole domain is 20 pixels. To synthetically model unresolved
porosity, we reduce the resolution of each image by a factor of 10 using volume averaging. The dimensions
of the upscaled porous medium are 253253210 pixels. We also add Gaussian noise with zero mean and stan-
dard deviation 0.01 to each upscaled image. Then, we reconstruct the low-resolution images using the down-
scaling algorithm and obtain a reconstructed porous medium whose dimensions are the same as those of the
original domain. Figure 12 shows an example of the low-resolution and corresponding downscaled image for
one cross section. The pore size distributions of the original and reconstructed domains are shown in Figure
13: despite the resolution of the image has been decreased by a factor of 10, the reconstruction algorithm
can capture well the original pore size distribution.

In order to calculate conductivity and tortuosity, we perform a numerical Darcy’s experiment using the orig-
inal and the reconstructed porous domains. We use Cartesian grids while solving the dimensionless Stokes
equation with an additional momentum loss term in the solid phase to ensure numerical stability, i.e.,

r2u1
a
R

u5rp;

r � u50;
(8)

where a is the phase indicator function, u is the flow velocity nondimensionalized by a characteristic
flow velocity U, R is a momentum loss coefficient rescaled by L2, with L the characteristic size of the flow
domain, and p is the pressure rescaled by L= lUð Þ, with l the fluid dynamic viscosity. In the void and solid

phases, a 5 0 and a 5 1, respectively. Equations (8) are supported
by inflow and outflow boundary conditions at the top and bottom
of the computational domain. The dimensions of the computational
domain are 2:532:532:01, and the indicator function a is set to
either 1 or 0 in the black and white pixels, respectively. We set
R : 51026, which corresponds to nearly impermeable solid bound-
aries while ensuring the stability of the numerical solver. We solve
equations (8) using the finite volume framework OpenFoam. We
modify the incompressible solver simpleFoam by adding the loss
term in the momentum equation. After performing the numerical
Darcy’s experiment, we calculate the value of conductivity and tor-
tuosity for the original and reconstructed domains, see Table 2. Tor-
tuosity is obtained by measuring the normalized length of the
streamlines. Figure 14 shows the streamlines in the original and
reconstructed domains.

3.2. Example 2: Real Geologic Media
Direct numerical simulations of flow and transport (to calculate, e.g.,
effective conductivity and dispersion coefficient) may be computa-
tionally prohibitive, especially if the reconstructed core size is rela-
tively large. Here we show that the pore-scale distribution extracted
from the downscaling algorithm can be used to parametrize
(reduced-order) macroscale models when the reconstructed domain

Table 1
Probabilities of the Extraction of the Large Pore After Downscaling With the
Physical and the Morphological Models for Different Values of White Noise Stan-
dard Deviation r

R Physical model Morphological model

0.1 0.835 1
0.07 0.883 1
0.05 0.882 1
0.02 0.943 1

Figure 10. First image of the 3-D synthetic porous medium. The image dimen-
sions are 250 3 250 pixels. White pixels corresponds void space and black pix-
els to the solid phase.
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is too large and render DNS prohibitive. Specifically, we apply the pro-
posed image processing algorithm to XCT data from a natural porous
medium, and use the extracted pore space to, first, fit the break-
through curves of a passive tracer and, then, to predict the measured
hydraulic conductivity. We employ a capillary-bundle model to param-
etrize hydraulic conductivity and passive transport features. The bun-
dle’s characteristic length scales are extracted either from the
proposed image processing algorithm or from a threshold-based seg-
mentation approach. The conductivities predicted in both cases are
then compared to experimental measurements. We emphasize that
the proposed framework is not restricted to the specific capillary-
bundle model, chosen here for demonstration only, but can be used
with any arbitrary macroscopic/reduced-order model of one’s choice,
where parameter fitting can be improved by a more accurate estimate
of, e.g., the pore size distribution.

Two subsurface sediment columns C6197A and C6203A collected
from boreholes in the 300 Area of the U. S. Department of Energy
Hanford Site in South-Central Washington State (Scheibe et al., 2015b)
are imaged by XCT scanning in the longitudinal direction to obtain
Nk 5 1,000 2-D grey-scale TIFF images of the cross-sectional area of
the cores. Each 2-D image has dimensions Ni3Nj51; 02431; 024 pix-
els. The images of the cores C6197A and C6203A are stored as two
stacks S1 and S2 of TIFF images, respectively. The volume render (for
both columns) is shown in Figure 15 and a sample 2-D image in Figure
16. Flow and transport experiments were conducted on the columns

(Scheibe et al., 2015b) to estimate porosity, hydraulic conductivity, and solute transport behavior (Table 3).
Further details of the experimental setup can be found in Scheibe et al. (2015b). In Figure 17, we provide a
schematic of the steps necessary to go from an XCT image to predictions of flow and transport processes.
Each step is analyzed in detail in the following.
3.2.1. Step 1: Intensity-Porosity Mapping
Before processing the images, we crop the region around the rim of the column representing the con-
tainer (circular ring in Figure 16a). We first identify the solid and void intensity by fitting the pixel

Figure 11. Volumetric render of the 201 synthetically images (not in scale).
Dimensions of each image are 250 3 250 pixels.

Figure 12. (a) Low-resolution upscaled image with added Gaussian noise, corresponding to the pore-scale distribution of
Figure 10. The dimensions of the upscaled image are 10 3 10 pixels, i.e., 25 times smaller than the original high-
resolution image. (b) Reconstructed pore-scale image using the downscaling algorithm. The dimensions of the recon-
structed image are 250 3 250 pixels.
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intensity histogram with Gaussian functions as shown in Figure 18a.
Then, by means of the intensity-porosity relation (2), we estimate
the porosity of each image �/k as well as the total porosity of each
column �/. For those images where a maximum corresponding to
the void phase is not clearly evident, we use linear regression
based on the extracted data to linearly correlate vv2vs to vs as
shown in Figure 18b. The estimated value of the total porosity of
stack S1 is �/50:178, which perfectly matches the experimental
value of /50:178 for the column C6197A. For the image stack S2,
the estimated porosity is �/50:278. This value matches the experi-
mentally measured value (/50:300) reasonably well. We empha-
size that the porosity estimate by means of the proposed new
image processing algorithm (Step 1) does not have any fitting
parameter, unlike segmentation-based approaches. This demon-
strates the first step of the algorithm performs well on images of
geologic media.

3.2.2. Step 2: Downscaling, Binary Image Reconstruction, and Segmentation
Once the porosity distribution is extracted from the grey scale image, a binary image, that preserves the
connectivity of the original sample, is needed to run pore-scale flow and transport models. In this second
step, we extract the pore size distribution of each image by applying both the physical and morphological
models. In both cases the free parameter d is determined such that the total porosity of the segmented
image matches the porosity determined at Step 1 with a tolerance of E-5. Figure 19 shows the segmenta-
tion result after the downscaling step for both the physical and the morphological model, as well as a
threshold-based segmentation. It is apparent that pore-space distribution is better captured by the morpho-
logical model. The dimension of the downscaled (high-resolution) images is Nl3Nm;520;480320;480. To
improve the execution time of the downscaling procedure, we parallelized the discretization algorithm
using the OpenMP library (S. Korneev, https://github.com/svyatoslavkorneev/downscaling). We executed
the parallel code on Amazon Web Services (AWS) compute-optimized EC2 36 core instance (Amazon Web
Services data are available at https://aws.amazon.com/). The execution time for each image is approximately
2 min. For the binary image segmentation, we used the open-source library scikit-image (Image processing
in Python data are available at http://scikit-image.org/).
3.2.3. Steps 3–4: From Processed Images to Flow and Transport
Predictions—A Capillary-Bundle Model
The pore size distribution (extracted from either threshold-based segmentation or from the downscaling
approach) can be directly used (i) to parametrize flow and transport models and (ii) to determine permeabil-
ities. The permeabilities predicted from a given pore size distribution can then be compared with the exper-
imental ones. For such estimates, we use a capillary-bundle model since pore-scale simulations of the
reconstructed highly resolution images are computationally too expensive. We emphasize that, while any
other approach can be employed to estimate flow and transport dynamics from a reconstructed binary
image (including, but not limited to, direct numerical simulations), the aim of this study is to verify the per-
formance of the image processing method with downscaling against that of a classic threshold-based seg-
mentation approach: this is achieved by using the same capillary-bundle model on binary images obtained
from either threshold-based or downscaling-based segmentation to determine conductivity estimates.

Here we idealize both experimental columns as bundles of capillary tubes of different radii, randomly
blocked by transverse low permeable inclusions and embedded in a low-conductivity matrix (see cartoon in

Figure 20). We also assume that the blockages/inclusions conductivity
inside the capillary tubes, kinclusion, is the same as that of the matrix
which the capillaries are embedded in, kmatrix, i.e., kinclusion5kmatrix. This
idealization is supported by pore-scale simulations run by Scheibe
et al. (2015b).

Once the image is segmented (using either threshold-based or
downscaling-based segmentation) and the pore size distribution cal-
culated, we rank the area of the extracted pores in image j in descend-
ing order, for any j51; . . . ;Nk , i.e.,

Figure 13. Comparison of histograms of the pore size distribution extracted
from the original high-resolution (black lines) and reconstructed (red lines)
images. The vertical axis has logarithmic scale.

Table 2
Conductivity and Tortuosity of the Original and Reconstructed Domains

Kz sz

Original 1 1.2
Reconstructed 0.8 1.2

Note. The vertical conductivity of the samples is normalized by the con-
ductivity of the original pore-scale domain. Tortuosity is calculated directly
from estimating the normalized length streamlines in Figure 14.
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fs1
1 > s1

2 > s1
3 > � � � > s1

c > � � � > s1
p > �s1

matrixg for image 1

½. . .�

fsj
1 > sj

2 > sj
3 > � � � > sj

c > � � � > sj
p > �sj

matrixg for image j

½. . .�

fsNk
1 > sNk

2 > sNk
3 > � � � > sp

c > � � � > sNk
Nc
> �sNk

matrixg for image Nk

; (9)

where sj
c is the cth pore area (measured in pixels) of the jth image, and

sj
p represents the pore size threshold in image j which separates pores

constituting the matrix from pores forming the capillaries, i.e., the cth

pore is assigned to the matrix if c> p, and to the capillary bundle, oth-

erwise. Also, �sj
matrix is the average area for pores with index c such that

p < c � Nj , where N j is the total number of pores in image j, i.e.,

�sj
matrix : 5½

PNj

c5p11 sj
c�=ðNj2p21Þ. The average pore radius for

the matrix, �r matrix, can be determined as �r matrix5D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�sj

matrixi=p
q

where h�sj
matrixi is the matrix pore area averaged across all images Nk

and D5Dx5Dy is the dimensional pixel’s size. Assuming that the matrix
is itself a bundle of parallel capillary tubes with characteristic radius
�r matrix, the volumetric flux through the matrix Qmatrix can be estimated as

Qmatrix5Nmatrix
p�r 4

matrix

8l
Dp; (10)

where Nmatrix is the number of capillaries inside the matrix. Since the
total matrix cross section is

Figure 14. Streamlines topology and velocity magnitude (color legend) in the (a) original domain and (b) reconstructed domains. The transparent cube corre-
sponds to the boundaries of the two media.

Figure 15. Volume render from XCT images of columns (a) C6197A and (b)
C6203A.
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Amatrix5
pNmatrix�r 2

matrix
�/

; (11)

the matrix conductivity [L/T] is

Kmatrix5qg�/
�r 2

matrix

8l
: (12)

Assuming the porosity of the inclusions (inside the capillaries) is equal to that of the matrix, Nmatrix can be
estimated as follows:

Nmatrix5
R22

Xp

c51
r2

c

�r 2
matrix

�/; (13)

where R is the physical radius of the column and �/ is the mean core porosity.

Each capillary c, with c51; . . . ; p, is constructed by connecting pores with the same subscript between adja-
cent images and is assigned an effective radius rc determined as the radius of the average pore area hsj

ci across
all Nk images, i.e., rc : 5D

ffiffiffiffiffiffiffiffiffiffiffiffi
hsji=p

p
. Assuming that the p capillary tubes with radii fr1; r2; . . . ; rpg contain low

conductivity inclusions with characteristic pore radius �r matrix, then each clogged capillary c is a layered system
and its volumetric flux can be estimated as follows:

Qc5
1
l

L
8ðL2lÞ

pr4
c

1 8l
r2

c
�/=�r 2

matrixð Þp�r 4
matrix

Dp; (14)

where l is the length of the blockage and r2
c
�/=�r 2

matrix the number of
the capillary tubes inside the inclusion. Similarly, the conductivity of
each capillary tube is

Kc5qg
Qc

pr2
c Dp

: (15)

The equivalent conductivity for the bundle of c capillary tubes, Kbundle,
can be defined as

Kbundle5

Xp

c51
r2

c KcXp

c51
r2

c

: (16)

The total conductivity of the system is

Figure 16. (a) A representative XCT image of sediment column C6197A. (b) Zoomed-in views of the solid phase (red
square), porous-solid phase (green square), void phase (black square), and a mixture of the three phases (blue square).

Table 3
Experimental Measurements

C6197A C6203A

/ 0.178 0.300
K (cm/min) 1.570 1.956
Q (cm3/min) 3.24 3.24
L (cm) 25 25
R (cm) 4.45 4.45
Nk 1,000 1,000
Ni3Nj (pixels2) 1,024 3 1,024 1,024 3 1,024
Dx5Dy (cm) 9:331023 9:331023

Dz (cm) 2:531022 2:531022

D (cm2 min21) 1:24831023 1:24831023

lw (Pa s) 1:00231023 1:00231023

qw (kg m23) 998.2 998.2
g (m s22) 9.8 9.8
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K5
AmatrixKmatrix1p

Xp

c51
r2

c Kc

pR2
; (17)

where Amatrix is defined by (11), since pR25Amatrix1p
Pp

c51 r2
c (from

(13)). Once K is determined, the concentration c(t) of a passive solute
measured at the end of the column x 5 L, is given by

cðtÞ5 1
Q

Xp

c51

QcccðL; tÞ1QmatrixcmatrixðL; tÞ
" #

; (18)

where Q is the total volumetric flux through the column, and cc and
cmatrix are a solution of the 1-D transport equation:

@ci

@t
5D?

i
@2ci

@x2
2vi

@ci

@x
; i5fc;matrixg (19)

subject to

ci 0; tð Þ5cin and
@ci

@x
ðL; tÞ50: (20)

In (19),

vi5
Ki

qg
Dp; i5fc;matrixg; (21)

where Kmatrix and Kc are defined by (12) and (15), respectively,

Dp5
qgQ
pR2K

; (22)

and D?
i is the Taylor dispersion coefficient defined as (Aris, 1956, equa-

tion (26))

D?
i

D
511

Pe2
i

48
; (23)

with

Pei5
ri vi

D
; (24)

and D the molecular diffusion coefficient. Equation (19) has a known
analytical solution:

ci x; tð Þ5 1
2

erfc
x2vit

2
ffiffiffiffiffiffiffi
D?

i t
p

 !
1

1
2

exp
vi x
D?

i

� �
erfc

x1vit

2
ffiffiffiffiffiffiffi
D?

i t
p

 !
; (25)

with i5fc;matrixg. In the following, we compare the model predic-
tions (17) and (18) with experimentally measured conductivity values
and breakthrough curves.
3.2.4. Step 5: Comparison Between Model Predictions and Data
Using Threshold-Based and Downscaling-Based Segmentation
Since on the experiment time scale tend (<8h), QmatrixcmatrixðL; tÞ �Pp

c51 QcccðL; tÞ, then (18) can be simplified as follows:

cðtÞ � 1
Q

Xp

c51

QcccðL; tÞ: (26)

This hypothesis will be tested a posteriori. The breakthrough curve
(26) contains two unknown parameters: the number of capillary tubes
p and the length l of the inclusions. We determine p and l by minimiz-
ing the L2 norm:

Figure 17. Image processing algorithm and its coupling to a physical model for
flow and transport. The segmentation step in the image processing allows one
to extract relevant pore-scale statistics, which are then used to parametrize a
physical model of flow and transport (in this case, a capillary-bundle model).

Water Resources Research 10.1002/2018WR022886

KORNEEV ET AL. 15



Figure 18. (a) Pixel intensity histogram of a XCT image (black dots) and the Gaussian fits corresponding to the solid and
void phases (blue and orange solid lines, respectively). (b) Linear regression (orange line) between vv2vs and vs (black
dots).

Figure 19. Example of segmentation with downscaling of a (a) real image, where each color labels an interconnected
bounded region (i.e., a pore). (b) Segmentation with downscaling through the physical model. (c) Segmentation with
downscaling through the morphological model. (d) Threshold-based segmentation.
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L25
XNb

i51

c tið Þ p; l½ �
cðtendÞ

2bi

	 
2
( )1=2

; (27)

where bi is the experimental concentration measured at time ti, nor-
malized by bNb , and tNb 5tend. We emphasize that, while we use p and
l (instead of a more classical dispersion coefficient Deff ) as fitting
parameters to minimize the error between the theoretical break-
through curve (26) and the experimental one, the dependence of the
BCT on Deff is implicit: the effective dispersion coefficient of the core
depends on the number p of capillaries in the bundle (as evident from
equation (26)), as well as on the length l of the low conductivity inclu-
sions within them. In Table 3, we list the conductivity measurements
for both cores as well as other experimental quantities. Once p and
l are defined, we determine K from (17). For each core, we run the
minimization problem on the binary images generated from a
threshold-based or downscaling-based (with morphological model)
segmentation approach. It is worth noticing that in the threshold-
based method each image is segmented such that its porosity
matches that of the original grey scale image. Figure 21 shows the fit-
ted breakthrough curves for the two cores C6197A and C6203A. While
both image processing methods provide a reasonably good fit of the
breakthrough curves, the conductivity predicted from threshold-
based segmentation overestimates the experimenatlly measured con-

ductivity by 2 order of magnitudes for both samples. The downscaling-based segmentation provides an

Figure 20. Idealization of the experimental core as a bundle of capillaries
embedded in a porous matrix of conductivity Kmatrix, whose pores have a uni-
form characteristic size �r matrix. Each capillary c has radius rc and contains a low
conductivity inclusion. The latter has the same properties of the surrounding
matrix.

Figure 21. Comparison between experimental and fitted breakthrough curves from different image processing methods
(downscaling-based on the left, and threshold-based on the right). Predicted conductivity values are also compared with
experimental ones. Despite the breakthrough curves can be fitted with either method, a threshold-based segmentation
approach provides conductivity predictions that are 2 order of magnitude larger than the experimentally measured val-
ues. (a) Core C6197A: downscaling-based segmentation result. (b) Core C6197A: threshold-based segmentation result.
(c) Core C6203A: downscaling-based segmentation result. (d) Core C6203A: threshold-based segmentation result.
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excellent conductivity estimate (see Table 4). This result can be explained as follows: while threshold-based
segmentation can capture the characteristic size of the largest pores (i.e., the capillary bundle), it fails to
properly describe the characteristic size of the unresolved pore spaces. Since each capillary acts as a in-
series layered system, its effective conductivity is primarily controlled by the smallest pores, see equation
(14). As a result, the conductivity predicted after binary segmentation significantly differs from the experi-
mental one despite the breakthrough curves can be fitted reasonably well. A similar result was obtained by
Scheibe et al. (2015b), where the estimated conductivity of the reconstructed core after a binary segmenta-
tion was 10 times larger than the experimental value. In that case, also the estimated porosity differed by 1
order of magnitude from the measured one (see their Table 1). Table 4 has a list of characteristic quantities
determined from both downscaling-based and threshold-based segmentation. While the characteristic
quantities of the capillary bundle (e.g., Kbundle) and the largest capillary (e.g., radius r1, Darcy flux v1, Pecl�et
number Pe1, advection time through the column s1) obtained from either image segmentation method
have the same order of magnitude, threshold-based segmentation leads to an estimate of the characteristic
radius of the matrix rmatrix that is 1 order of magnitude larger than that from the downscaling-based
method. This results in a significant overestimation of the conductivity K of the cores by 2 order of magni-
tudes. Finally, we determine the advection time scale for the matrix to test the approximation (26). Since for
all cases, the advection time inside the matrix is more than 8 h (as shown in Table 4), it is reasonable to
neglect the matrix contribution to the breakthrough curves.

4. Conclusions

Notwithstanding the advancements in direct numerical simulations of pore-scale flow and transport in nat-
ural sediments, the accurate reconstruction of pore-scale topology from X-ray tomographic images remains
a major bottleneck in the development of predictive computational models. The limited resolution of X-ray
tomography is often insufficient to resolve and characterize the geometry of the pore space within the fine-
grained region of a sample. As a result, an overwhelming number of studies have used single and multilevel
threshold-based segmentation approaches to identify different phases in the sample (generally, a pore, a
solid and a porous-solid phase) and reconstruct the pore-scale topology necessary to run direct numerical
simulations. Such studies have shown that the dynamical response of the reconstructed porous structure
strongly depends on the choice of such (arbitrary) cutoff thresholds. Here we have proposed a threshold-
free downscaling-based segmentation approach to handle partial volume effects in moderately unresolved

Table 4
Parameters of the Capillary-Bundle Model for Both Cores C6197A and C6203A

C6197A C6203A

Downscaling based Threshold based Downscaling based Threshold based

L2 norm 0.26 0.24 0.13 0.44
l 1 0.5 0.75 1.5
p 1 1 6 1
K (cm/min) 0.8 218.8 3.8 269.0
/ 0.178 0.178 0.277 0.277
Kmatrix (cm/min) 0.63 63.2 1.0 108.1
Kbundle (cm/min) 15.7 3,149.1 34.6 1,800.3
�r matrix (cm) 2:231023 2:431022 2:331023 2:531022

Qmatrix (cm3/min) 2.48 0.89 0.8 1.2
vmatrix (cm/min) 4:031022 1:5131022 1:431022 2:131022

Pematrix 0.14 0.51 0.05 0.75
smatrix5L=vmatrix (min) 618.4 1,659.2 1.783.3 1,193.7
Qbundle (cm3/min) 0.75 2.35 2.4 2.1
r1 (cm) 4:931021 1.0 9:431021 1.4
v1 (cm/min) 1 0.75 0.47 0.35
Pe1 760.6 1,156.0 675.0 738.0
s15L=v1 (min) 24.7 33.3 53.5 71.7

Note. All the parameters are determined after fitting p and l by minimizing the L2 norm (27). The predicted conductiv-
ity and porosity using either threshold-based or downscaling-based segmentation approaches are in boldface.
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images of spatially heterogeneous, but chemically homogeneous, granular media. The method is based on
(i) a map between pixel grey scale intensity and pixel porosity and (ii) a subpixel morphological model used
to generate a high-resolution binary image from poorly resolved porosity maps while preserving important
subresolution information and intraslice connectivity of large pores. The primary advantage of the proposed
algorithm is its ability to better capture relevant unresolved lengths scales without relying on the definition
of thresholds. The downscaling-based reconstruction algorithm is first tested on synthetic images and its
performance compared with threshold-based segmentation approaches: specifically, we show that the
downscaling-based method is able to represent the full pore size distribution, including below-resolution
length scales, better than threshold-based segmentation. Next, we test the algorithm on a synthetic 3-D
porous medium and show that the reconstructed image can be successfully used to calculate effective
transport properties (e.g., conductivity and tortuosity) through Direct Numerical Simulations. We also apply
the algorithm on XCT images of two sediment columns collected from boreholes in the 300 Area of the U.S.
Department of Energy Hanford Site in South-Central Washington State. We generate binary images of the
pore structure from the original unresolved XCT images by means of both threshold-based and
downscaling-based segmentation. Once the binary images are reconstructed, we use them to parametrize
an idealized capillary-bundle model to describe the topology of both columns. While the predicted conduc-
tivity from the threshold-based segmentation overestimates the experimental value by 2 orders of magni-
tude, the downscaling-based segmentation provides an excellent prediction due to its ability to better
characterize the length scale distribution of small pores. Finally, while the algorithm is designed to process
moderately unresolved images of chemically homogeneous granular media with large spatial heterogene-
ity, the extension of the algorithm to chemically heterogeneous samples is subject of current investigations.
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