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Abstract Empirical or theoretical extensions of Darcy’s law for immiscible two-phase flow have shown
significant limitations in properly modeling the flow at the continuum scale. We tackle this problem by
proposing a set of upscaled equations based on pore-scale flow regimes, that is, the topology of flowing
phases. The incompressible Navier-Stokes equation is upscaled by means of multiple-scale expansions
and its closures derived from the mechanical energy balance for different flow regimes at the pore scale.
We also derive the applicability conditions of the upscaled equations based on the order of magnitude of
relevant dimensionless numbers, that is, Eotvos, Reynolds, capillary, Froude numbers, and the viscosity and
density ratio of the system, as well as a set of closures valid for the basic flow regimes of low Eotvos number
systems, that is, core-annular and plug and drop traffic flows. We provide analytical expressions for the
relative permeability of the wetting and nonwetting phases in different flow regimes and demonstrate that
the effect of the flowing-phases topology on the relative permeabilities is significant. Finally, we show that
the classical two-phase Darcy law is recovered for a limited range of operative conditions, while specific
terms accounting for interfacial and wall interactions should be incorporated to accurately model ganglia or
drop traffic flow.

1. Introduction

The flow of two immiscible fluids through porous media is frequently encountered in many engineering
applications, such as enhanced oil recovery (Lake, 1989), carbon sequestration (Yang et al., 2008), wetting
and drying processes (Lenormand et al., 1983), environmental contaminants transport in aquifers (Bear &
Cheng, 2016), and modern energy storage technologies (Arunachalam et al., 2015). At the pore scale, flow
is dominated by surface tension forces 𝜎 and wall-wetting properties, and it is also strongly affected by the
pore geometry. In fact, these types of systems are usually characterized by a small Eotvos number (Eo =
Δ𝜌gL2∕𝜎 ≪ 1), that is, the largest drop, which may occupy the entire flow cross section, is still smaller than
the critical (minimal) drop size required for merging of adjacent drops to take place, and, therefore, the flow
characteristics are similar to microgravity systems (see Brauner, 1990).

The most common approach to modeling immiscible two-phase flow in a porous medium is to consider an
extension of Darcy’s law (Darcy, 1856) for the multiphase flow scenario by introducing the concept of relative
permeabilities at the continuum scale. The main assumption of a linear relation between the filtration velocity
and the pressure gradient is still considered valid, while the capillary pressure relation and a conservation
law for the saturation are necessary to close the problem. The two-phase Darcy’s law has been obtained both
empirically (in analogy with single-phase flow; Bear, 1972; Leverett, 1941; Wyckoff & Botset, 1936) and has
been derived theoretically by upscaling the Stoke’s equation at the pore scale. Many upscaling approaches
have been adopted so far, such as homogenization via multiple-scale expansions, (Auriault, 1987; Auriault
et al., 1989; Daly & Roose, 2015; Hornung, 1997) and volume-averaging methods (Hassanizadeh & Gray1980,
1990, 1993a, 1993b; Kalaydjian, 1987; Marle, 1982; Slattery, 1968, 1970; Whitaker, 1986, just to mention a few).
The issue of including inertia effects has been mostly studied for single-phase flow (see, for example, Z. Chen
et al., 2001; Marusic-Paloka & Mikelic, 2000; Mei & Auriault, 1991; Sanchez-Palencia, 1980), although, in the
context of multiphase flow, Lasseux et al. (2008) proposed an extension of the volume-averaged upscaled
equations to account for inertial effects.

More recently, the classical interpretation of the macroscopic laws has been questioned (Niessner et al., 2011;
Nordbotten et al., 2007, 2008; Xu & Wang, 2014), while their limited predictive capability has been long
known and associated with the inherent assumptions of the multiphase Darcy law (Blunt, 2017). Quoting
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Figure 1. Sketch of flow regimes in a complex geometry and their idealization in a capillary tube of diameter D and
length L. The wetting phase (dark blue) is referred to as phase 1, with the nonwetting phase (light blue) as phase 2.

from (Blunt, 2017,§6.3.2, pp. 255) “the key assumption inherent in the multiphase Darcy law is that we have
a percolation-like displacement pattern, such that there is a representative elementary volume within which
we have an average saturation that evolves slowly in both space and time. Over the time-scale for flow across
this elementary volume, the saturation is approximately constant (that is there is little displacement), the fluid
configuration is fixed and the relative permeabilities are the flow conductances of each phase … ”. With the
advent of high-performance computing, it became increasingly possible to investigate pore-scale dynam-
ics of immiscible displacement and understand its underlying physics (see, for example, Armstrong et al.,
2016; McClure et al., 2016a; Tartakovsky & Meakin, 2006). This, despite the fact that the inherent instability
of multiphase flows, and lack of reproducibility of controlled experiments (Ling et al., 2017), renders mul-
tiphase systems particularly challenging to model virtually at any scale. Concurrent improvements of X-ray
microtomography combined with its nondestructive features have allowed direct visualization of pore-scale
structures and distribution of phases as inputs to computational models. A number of authors have investi-
gated pore-scale phases distribution using X-ray microtomography and demonstrated the complexity of the
nonwetting and wetting phase interface geometry (e.g., Armstrong et al., 2014; Blunt et al., 2013; X. Chen &
DiCarlo, 2016; X. Chen et al., 2017; Gao et al., 2017; Garing et al., 2017; Moghadasi et al., 2016; Prodanovic et al.,
2007, 2015; Reynolds et al., 2017).

In fact, four possible steady state pore-scale flow regimes, that is, the microscale phase topology, have been
experimentally identified by Avraam and Payatakes (1995a) for two-phase in porous media: large-ganglion
dynamics, small-ganglion dynamics, drop traffic flow, and connected-pathway flow (see Figure 1, left). In large
and small ganglion dynamics the wetting phase is continuous, while the nonwetting phase is disconnected
and flows in the form of ganglia, much bigger (large ganglion) or smaller (small ganglion) than the average
pore size. In the drop traffic flow regime, the nonwetting phase is disconnected and flows in the form of
drops whose size is comparable to the average pore size, while in the connected-pathway regime both phases
flow through separate and uninterrupted pathways. This flow regimes classification refers to quasi-static flow
conditions at the pore scale and is motivated by the emerging evidence that the transition from connected
pathways regime to an intermittent regime (e.g., ganglion-dynamics) can be identified as one of the causes
of hysteric behavior of the relative permeability curves, (see Armstrong et al., 2016, 2017; Datta et al., 2014;
Rucker et al., 2015).
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In this work, we focus primarily on capturing the physical mechanisms (e.g., interfacial stresses) underlying
the different flow regimes and their impact on relative permeability curves at steady state flow conditions.
Unlike other studies, we do not focus on any dynamical effects and their impact on the capillary pressure rela-
tions nor on the transient evolution of the relative permeability during drainage or imbibition at unsteady
flow conditions (Amir et al., 2015; Karadimitriou et al., 2014; Kianinejad et al., 2016); instead, we propose an
approach to quantify the role that interfacial area has on relative permeabilities and the form of the upscaled
equations. The importance of accounting for the evolution of the fluid-fluid interface has been already rec-
ognized, and different upscaling methods have been used to explicitly derive macroscopic equations for the
evolution of the interface, (e.g., Gray et al., 2015; Gray & Miller, 2010; Hilfer, 1998; Jackson et al., 2009; McClure
et al., 2016b; Niessner & Hassanizadeh, 2008; Rybak et al., 2015), while Karadimitriou et al. (2014) show how
to estimate the interfacial variables in the macroscopic equations from experimental measurements of tran-
sient flow. However, the additional complexity in handling such models has hindered their penetration into
real world applications, and routine calculations are still based on classical two-phase Darcy’s law.

In this paper, we tackle this problem by proposing a homogenization approach based on the postula-
tion of steady state pore-scale flow regimes, for example, ganglion dynamics and connected-pathway flow.
We specifically aim at incorporating the interaction between the flowing phases and the solid by deriving
upscaled equations that are regime-specific. The main advantage of the proposed approach lies in account-
ing for the effect of the phase-topology at the pore scale while retaining simplicity of the final formulation.
Specifically, we use an analogy between such flow regimes in a real porous medium and two-phase flow in
a capillary tube (see Figure 1, right, where the complexity due to the geometry is reduced but the physics
behind the interaction between the phases is retained). We demonstrate that by postulating the flow regime
(i.e., how the phases are displaced in space and time at the pore-scale), we are able to construct the effec-
tive parameters of the upscaled equations and to derive analytical expressions for the relative permeability
of the wetting and the nonwetting phases for each flow regime. Following this approach, the interfacial area
enters the upscaled model via the postulation of the pore-scale flow regime and it is naturally embedded
in the macroscale equations through the relative permeabilities. Generalizations to realistic porous media is
currently under investigation.

The paper is organized as follows. In section 2 we formulate the pore-scale problem of two-phase flow in a
porous medium and we identify the relevant dimensionless parameters, that is, Eotvos, Reynolds, capillary,
Froude numbers, and the viscosity and density ratio of the system. In section 3, first we present limitations
and applicability conditions for the classical two-phase Darcy’s law (section 3.1), and then we derive a new
set of macroscopic equations by upscaling the incompressible Navier-Stokes equation by means of multi-
scale expansions, while specifying sufficient conditions that guarantee its validity. Differently from previous
works, the macroscopic equation (section 3.2) has the form of the mechanical energy balance equation and
it includes both unsteady and inertial effects, while the proposed closures are formulated for different flow
regimes at the pore-scale (section 4). We discuss in detail the impact of the most common pore-scale flow
regimes on the upscaled equations, namely, connected pathway and ganglion dynamics, and obtain analyti-
cal expressions for the relative permeabilities of the wetting and nonwetting phases for flow in a capillary tube.
In addition, we show that two-phase Darcy’s law represents only a particular case of the upscaling method
presented here. The conclusions are summarized in section 5.

2. Problem Formulation
We consider the flow of two immiscible and incompressible fluids through a rigid porous medium Ω̂, formed
by the spatial repetition of periodic unit cells Ŷ . Let L and l be the characteristic length scales of the medium
and of the unit cell, respectively. The scale parameter is defined as 𝜀 ∶= l∕L ≪ 1. The unit cell consists in the
pore space occupied by the two fluids, ̂ = ̂1 ∪ ̂2, and the solid matrix ̂; the fluid-fluid interface is Γ̂12,
while the fluid-wall interfaces are Γ̂1 and Γ̂2, respectively. The unit cells are connected, that is, the pore space
̂ of each cell Ŷ forms the multiconnected pore-space domain ̂𝜀 ⊂ Ω̂, and the cell geometry (the spatial
distribution of ̂) is considered known.

2.1. Governing Equations and Boundary Conditions
The flow of each (Newtonian) phase is described by the continuity and the Navier-Stokes equations in its fluid
domain,

∇̂ ⋅ ûi = 0, x̂ ∈ ̂i, (1a)
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𝜌i

[
𝜕ûi

𝜕t̂
+
(

ûi ⋅ ∇̂
)

ûi

]
= −∇̂p̂i + 𝜇i∇̂2ûi + 𝜌igeg, x̂ ∈ ̂i, (1b)

where ûi(x̂, t̂), p̂i(x̂, t̂), 𝜌i , and 𝜇i are the velocity, the pressure, the density, and the dynamic viscosity of the
ith phase; the subscript i = 1, 2 refers to the fluid 1 (wetting phase) and 2 (nonwetting phase), respectively,
while g is the gravitational acceleration and eg is a unit vector whose direction aligns with gravity. The flow is
subjected to no-slip and no-penetration at the walls,

ûi = 0 and ûi ⋅ n = 0 on Γ̂i, (2)

and the continuity of velocity, normal, and tangential shear stresses at the fluid-fluid interface,

û1 = û2 on Γ̂12, (3a)(
p̂1 − p̂2

)
I + n ⋅

[
𝜇1

(
∇̂û1 + ∇̂ûT

1

)
− 𝜇2

(
∇̂û2 + ∇̂ûT

2

)]
⋅ n = −𝜎𝜅̂ on Γ̂12, (3b)

t ⋅
[
𝜇1

(
∇̂û1 + ∇̂ûT

1

)
− 𝜇2

(
∇̂û2 + ∇̂ûT

2

)]
⋅ n = 0 on Γ̂12, (3c)

where𝜎 is the surface tension, 𝜅̂(x̂, t̂) = (1∕R1+1∕R2) is the local curvature of the interface, and I is the identity
matrix, while n and t are the normal and tangential versors at the fluid-fluid interface Γ̂12(x̂, t̂)which, advected
by the flow, satisfies a kinematic boundary condition. In this analysis, its location (history of the interface) is
supposed to be known.

2.2. Dimensionless Formulation
We normalize the governing equations by introducing the dimensionless quantities

x = x̂
L
, t = t̂

L∕U
, p =

p̂
𝜇1UL∕l2

, (4)

where U is a characteristic velocity scale. It is worth emphasizing that the scaling of pressure is based on
the assumption that pressure is the driving force at the macroscale and the viscous term and the pressure
gradient in equation (1b) are of the same order of magnitude. This choice ensures that the energy introduced
in the system at the larger scale (with characteristic length L) is dissipated at the pore scale (with characteristic
length l), similarly to Auriault and Adler (1995) and Battiato and Tartakovsky (2011). This choice is important
for determining the structure of the macroscopic equations, and, in particular, the capillary pressure relation.
Rewriting the equations in terms of dimensionless variables, we obtain

∇ ⋅ ui = 0, x ∈ i, (5a)

𝜀2Re

[
𝜕u1

𝜕t
+
(

u1 ⋅ ∇
)

u1

]
= −∇p1 + 𝜀2∇2u1 + 𝜀2 Re

Fr2
eg, x ∈ 1, (5b)

𝜀2RRe

[
𝜕u2

𝜕t
+
(

u2 ⋅ ∇
)

u2

]
= −∇p2 + 𝜀2M∇2u2 + 𝜀2R

Re
Fr2

eg, x ∈ 2, (5c)

where

Re =
𝜌1UL

𝜇1
, Fr = U√

gL
, M =

𝜇2

𝜇1
, and R =

𝜌2

𝜌1
(6)

are the Reynolds and the Froude numbers and the viscosity and density ratio, respectively. The dimensionless
boundary conditions are

ui = 0 on Γi, (7a)

ui ⋅ n = 0 on Γi, (7b)

u1 − u2 = 0 on Γ12, (7c)(
p1 − p2

)
I + 𝜀2n ⋅

[(
∇u1 + ∇uT

1

)
− M

(
∇u2 + ∇uT

2

)]
⋅ n = − 𝜀

Ca
𝜅 on Γ12, (7d)

t ⋅
[(
∇u1 + ∇uT

1

)
− M

(
∇u2 + ∇uT

2

)]
⋅ n = 0 on Γ12, (7e)

where

Ca =
𝜇1U

𝜎
and 𝜅 =

(
l

R1
+ l

R2

)
(8)

are the capillary number and the dimensionless local curvature of the interface, respectively. We emphasize
that since the local curvature is normalized by the characteristic length at the microscale (i.e., pore-scale), 𝜅 is
of order 1 only when the curvature radius is of the same order of the pore-scale characteristic length.
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Figure 2. Schematic of the macroscopic domain and the unit cells defined in the homogenization process. A unit cell
can be arbitrarily complex.

3. Homogenization via Multiple-Scale Expansions
The aim of the homogenization via multiple-scale expansions is to derive upscaled equations for averaged
variables at the continuum scale (Darcy scale), which are representative of the flow at the pore scale. The main
assumption is that separation of scales holds: two spatial scales, L and l, exist such that l ≪ L. It is assumed
also that no other significant spatial scale influences the problem (see Figure 2): even though this hypothesis
may be too restrictive when considering multiphase flow in a porous medium (i.e., the presence of a very thin
film of one of the two fluids on the solid surface or complex structures bigger than the unit cell may easily
violate the previous hypothesis), this type of analysis allows one to incorporate the shear interaction between
phases at the pore scale.

Following Xu and Wang (2014), we assume that all the time-dependent variables depend only on the fast time
scale s = t∕𝜀, that is, the variation in time is significant only at the pore scale and 𝜕∕𝜕t = 1∕𝜀 𝜕∕𝜕s. Then, we
define the local averages of any arbitrary pore-scale quantity (x, s) in space (e.g., over the entire unit cell Y ,
the volume i, or the surface Γ) and in time (over the time period T) as follows

⟨⟩ = 1|Y| ∫i

dy, ⟨⟩i
= 1|| ∫i

dy, ⟨⟩Γ = 1|Γ| ∫Γ
 ⋅ ndy, ̄ = 1

T ∫T
ds, (9)

where ⟨⟩ = Si𝜙 ⟨⟩i
and || = 𝜙|Y|, with 𝜙 the porosity of the medium and Si the saturation of the ith

phase, defined as

Si =
1
 ∫i

dy. (10)

The variables of the system are expanded in an asymptotic series in integer powers of 𝜀 as

ui(x, s) = u(0)
i (x, y, s) + 𝜀u(1)

i (x, y, s) +…

pi(x, s) = p(0)
i (x, y, s) + 𝜀p(1)

i (x, y, s) + ...

𝜅1(x, s) = 𝜅
(0)
1 (x, y, s) + 𝜀𝜅

(1)
1 (x, y, s) +…

(11)

where
y = x∕𝜀 (12)

is a fast variable and j = {0, 1, 2 · · ·} and i = {1, 2}. The variables u(j)
i (x, y, s), p(j)

i (x, y, s), and 𝜅
(j)
1 (x, y, s), are

Y-periodic functions in y. This requirement is satisfied in case of steady state flow, but it is not always valid
for displacement fronts that lack such periodicity. In these circumstances, the system may not be homoge-
nizable across the displacement front and hybrid methods, where continuum-scale descriptions away from
the front coupled to pore-scale equations across the front may be warranted. Although hybrid multiscale (or
multialgorithm) methods in the context of porous media were initially introduced to model sharp reacting
fronts in single-phase flow (Alexander et al., 2005; Battiato et al., 2011; Yousefzadeh & Battiato, 2017), where
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continuum-scale approximations are rendered invalid (Auriault & Adler, 1995; Boso & Battiato, 2013; Korneev
& Battiato, 2016), recent computational efforts, based on multialgorithm coupling, have focused on modeling
displacement fronts in multiphase flows as well (e.g., Tomin & Lunati, 2013).

Furthermore, we define the upscaled set of equations in terms of the order of magnitude of the dimensionless
numbers

Re = 𝜀𝛼, Fr = 𝜀𝛽 , R = 𝜀𝛾 , M = 𝜀𝛿, Ca = 𝜀𝜂, 𝜅 = 𝜅1(x, s)𝜀𝜃, (13)

where the exponents characterize the system behavior. In (13), 𝜅1(x, s) is the local curvature of the interface,
defined as a term of order 1, O(𝜅1(x, s)) = O(1), while the exponent 𝜃 indicates the magnitude of the curvature.
This emphasizes the importance of treating the average curvature as one of the dimensionless parameters
which need to be considered for classifying the system. From the practical point of view, we expect 𝜅 to scale
with the pore size for well connected phases, while it may scale differently for other pore-scale flow regimes.

In the following, we first derive the applicability conditions of the classical two-phase Darcy (section 3.1) and
then present the regime-specific upscaled equations (section 3.2). Details of the derivations are presented in
Appendices A, B, and C.

3.1. Limitations of the Two-Phase Darcy’s Law
Despite the fact that the two-phase Darcy’s law is extensively used for routine macroscopic calculations, to
the best of our knowledge, a rigorous definition of its applicability regimes has not yet been provided in the
literature, except for the experimental classification presented by (Cinar & Riaz, 2014). Here, differently from
previous analyses (e.g., Auriault, 1987; Auriault et al., 1989; Hornung, 1997), we reformulated the derivation in
terms of dimensionless variables, see Appendix B for all the details, obtaining the filtration laws

⟨u1⟩ = −K11∇p1 − K12∇p2, x ∈ Ω, (14a)

⟨u2⟩ = −K21∇p1 − K22∇p2, x ∈ Ω, (14b)

along with the relation between the macroscopic pressures of the two phases

p1 − p2 = ⟨𝜅⟩ (15)

and the conservation laws for the saturation

𝜙
𝜕Si

𝜕t
+ ∇ ⋅ ⟨ui⟩ = 0 with i = 1, 2 and S1 + S2 = 1. (16)

Equations (14)-(16) are recovered only if the following conditions are met:

1. 𝜀 ≪ 1;
2. Re < 𝜀−1 and R ⋅ Re < 𝜀−1;
3. Re∕Fr2 >𝜀−2 and R ⋅ Re∕Fr2 >𝜀−2;
4. O(M) = 1;
5. O (⟨𝜅⟩∕Ca) = 𝜀−1;
6. the interface Γ12 is almost stationary.

In equation (14), Kij are the dimensionless permeability tensors formally defined during the homogeniza-
tion process as the average of closure variables, Kij = ⟨kij(y)⟩ (see Appendix B1), while in equation (15), ⟨𝜅⟩
represents the average pore-scale curvature of the system.

The constraints 1–5 ensure the separation of scales and define the applicability of the Darcy’s law for
two-phase law depending on the relative importance of Reynolds number, the density ratio, the viscosity
ratio, the capillary number, and the average pore-scale curvature of the system. We have summarized the con-
ditions for which the macroscopic equations hold in the phase diagrams of Figure 3. The colored region of
Figure 3a (constraint 2) indicates conditions for which the unsteady and inertia effects are negligible for both
phases in terms of Re and R. Figure 3b (constraint 3) summarizes conditions for a microgravity system (i.e., the
gravity contribution is negligible for both phases) in terms of Re∕Fr2 and R: since two-phase flows in porous
media are characterized by a small Eotvos number (Eo ≪ 1), this constraint is often met in practical cases. As
imposed by constraint 4, the viscosity ratio should be of order 1 to ensure both the separation of scales and
the existence of a filtration law for phase 2.

PICCHI AND BATTIATO 6



Water Resources Research 10.1029/2018WR023172

Figure 3. Phase diagram indicating the applicability of the macroscopic
equations for two-phase flow in a porous media in terms of (a) Re and R; (b)
Re∕Fr2 and R; (c) ⟨𝜅⟩∕Ca and M.

Interestingly, we show that the capillary number alone is not sufficient
to guarantee that scales are separated: instead, the ratio of the average
pore-scale curvature, ⟨𝜅⟩, to the capillary number Ca (see Figure 3c) needs
to satisfy appropriate conditions. Specifically, equation (15) is recovered
only if such ratio is of order of 𝜀−1. From a practical point of view, the aver-
age pore-scale curvature radius for well-connected phases scales with the
pore size, namely, O (⟨𝜅⟩) = O(1), and, therefore, the inequality of the
macroscopic pressures is recovered only when O(Ca) = O(𝜀). This may not
be true for different flow regimes (e.g., ganglion and drop traffic flows),
where pore-scale curvature may not always be well defined. Thus, a cor-
rect estimation of the average pore-scale curvature, and consequently of
pore-scale flow regimes, is an essential information for classifying the sys-
tem, as pointed out also by the recent experimental analysis by Armstrong
et al. (2012) and Singh et al. (2016).

The calculation of relative permeabilities by solving the closure problem
is complex and computationally expensive in the context of two-phase
flow, and, therefore, deriving consistent expressions for K ij is not straight-
forward. Yet, experimental evidence suggests that relative permeabilities
should be dramatically influenced by pore-scale flow regimes, since sig-
nificant changes in phase connectivity and the generation of intermittent
structures of the nonwetting phase (ganglia) may be one of the leading
causes of hysteretic behavior of relative permeability curves (see Arm-
strong et al., 2016; Avraam & Payatakes, 1995a). Thus, incorporating the
physical dependence of the pore scale processes in to upscaled equation is
the main motivation behind the a new upscaling approach proposed here.

In the following, we address this problem by deriving an upscaled
equation for the mechanical energy balance, where the closures are devel-
oped for specific flow regimes.

3.2. Upscaled Mechanical Energy Balance for Two-Phase Flow
in Porous Media
In this section, we present a general set of upscaled equations which we
have obtained by homogenization of the two-phase Navier-Stokes prob-
lem while embedding also unsteady and inertia effects (all the details of
the derivation are shown in Appendix C). The upscaled equations are cast
in the form of a mechanical energy balance: here the objective is to retain
both the simplicity of the final formulation and the capability to easily
incorporate multiphase pore-scale dynamics. We obtain that the momen-
tum transfer between two phases in a rigid porous medium, described by
equations (5), can be homogenized as follows:

𝜀Re
(1 + 1

)
= −∇p1 ⋅ ⟨u1⟩ − 1 +1 + 𝜀2 Re

Fr2
1, x ∈ Ω, (17a)

𝜀ReR
(2 + 2

)
= −∇p2 ⋅⟨u2⟩−2+M2+𝜀2R

Re
Fr2

2, x ∈ Ω, (17b)

p1 − p2 =
⟨𝜅⟩
Ca

𝜀, (17c)

where ⟨𝜅⟩ represents the averaged pore-scale curvature, p1 and p2 are the
macroscopic pressure, while ⟨u1⟩ and ⟨u2⟩ are the filtration velocity of the
phase 1 and 2, respectively. In (17), (i) 1,2 is the unsteady term, it is asso-
ciated with the accumulation of kinetic energy and vanishes for steady
state flow; (ii) 1,2 is the Forchheimer term, which embeds inertia effects,
and vanishes for fully developed flow; (iii) 1,2 is the work term which
accounts for the shear stress at the wall and at the fluid-fluid interface in
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the unit cell; and (iv) 1,2 is the pressure term; (v) 1,2 is the gravity term which accounts for the work done by
the body force on the system. The problem is then closed with a conservation law for the saturation, that is,
equation (16).

The capillary pressure relation (17c) is strongly controlled by the average curvature at the pore scale, ⟨𝜅⟩,
which can be estimated for both the cases of well-connected and unconnected phases, i.e., connected path-
way and ganglia flow regimes, respectively. From a practical point of view, a complex phase topology can
be accounted for because ⟨𝜅⟩ is obtained by averaging the local curvature over the unit cell. For example, in
the case of ganglion flow dynamics, the average pore-scale curvature radius does not necessarily scale with
the pore size because, while the diameter of elongated drops is of the order of the pore size (Eo ≪ 1 sys-
tems; Brauner, 1990), the drops do not necessarily occupy the entire unit cell. Therefore, if we know the phase
topology along with other scaling parameters in the upscaled equations, we can fully determine the capillary
pressure relation. In this regard, McClure et al. (2018) consider a geometrical description of the capillary pres-
sure, which relates the average mean curvature, the fluid saturation, the interfacial area between fluids, and
the Euler characteristic. They show that a geometric state function is able to characterize the microscopic fluid
configurations. Such types of relationships between flow regimes and pore-scale topology of the interface
would allow one to estimate the right-hand side (RHS) of (17c). In classical derivations, instead, the hypothesis
of well-connected phases is required, and, only recently, different strategies have been proposed for handling
the issue of unconnected phases by assigning a macroscopic volume averaged pressure to the nonwetting
phase (Nordbotten et al., 2008) or by introducing new state variables for the nonconnected phases (Hilfer,
2006). Finally, we want to emphasize that from a physical point of view, equation (17c) should simply be inter-
preted as a relation between the macroscopic pressures, where the averaged pore-scale curvature includes
both capillary and dynamic effects (see Løvoll et al., 2011).

The upscaled equations (17a) and (17b), hold when the following applicability conditions are satisfied
(summarized in Figure 3):

1. 𝜀 ≪ 1;
2. R ⋅ Re ≤ 𝜀−1 and Re ≤ 𝜀−1 ;
3. R ⋅ Re∕Fr2 ≥ 𝜀−2 and Re∕Fr2 ≥ 𝜀−2;
4. O(M) ≤ (1);
5. ⟨𝜅⟩∕Ca ≥ 𝜀−1.

Compared to the case of the two-phase Darcy’s law (see section 3.1), some constraints have been relaxed.
First, here we can account for the case of nonnegligible inertia and unsteady effects, namely, the boundaries
of the colored region in Figure 3a which correspond to Re = 1∕𝜀 and Re ⋅ R = 1∕𝜀. In fact, both the unsteady
and the Forchheimer terms in equation (17) are controlled by the order of magnitude of Re and R. The shaded
region of Figure 3c shows that the upscaled equations hold for a specific combination of the viscosity ratio
M, which also controls the term 2, and the ratio of the average pore-scale curvature and the capillary num-
ber. In particular, we are including in the applicability region also the cases which give us the equality of the
macroscopic pressures, that is, ⟨𝜅⟩∕Ca>𝜀−1. Finally, Figure 3b summarizes the conditions to be satisfied for
assuming a microgravity system.

In the following, using a capillary tube analogy, we formulate regime-specific closure relationships.

4. Impact of Pore-Scale Flow Regimes on the Upscaled Equation
In this section, we present the impact of pore-scale flow regimes on the upscaled equations: we first postulate
the pore-scale flow regime (i.e., connected pathway, small ganglion, and large ganglion dynamics) and, then,
we derive regime-specific upscaled equations from the one obtained in section 3.2 by modeling specific clo-
sures for each flow regime. To achieve this goal, we propose an analogy between flow regimes in a real porous
medium, as experimentally observed by Avraam and Payatakes (1995a) and Armstrong et al. (2016) and the
basic flow regimes in a straight capillary tube of diameter D and length L at microgravity conditions (Eo ≪ 1 )
with porosity 𝜙 = 1, as shown in Figure 1. In fact, a capillary tube can be assumed as the simplest representa-
tion of a porous medium (Bear, 1972), and, in the two-phase context, it results to be a convenient solution for
modeling the friction at the solid walls and at the fluid-fluid interfaces for different flow regimes. Since we treat
the system as one-dimensional, we only require that the scale parameter is sufficiently small, 𝜀 = D∕L ≪ 1,
where the tube diameter is the pore-scale characteristics length. At the same time, we look at low Eotvos num-
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ber systems: in these conditions, the phase topology is strongly affected by surface tension effects, and drops
occupy almost the entire cross section of the microchannel (see Brauner, 1990; Yagodnitsyna et al., 2016).

In this context, the analogy allows us to significantly reduce the complexity of the problem, while retaining
the fundamental physical interactions between the fluids. In particular, we look at the following flow regimes:

1. Connected-pathway flow: Both phases flow in separate and uninterrupted pathways, and, in steady state
conditions, the interface between phases can be considered static (see Armstrong et al., 2016; Avraam &
Payatakes, 1995a). In this flow regime the fluid-fluid interactions are negligible compared to fluid-wall inter-
actions because each phase flows in separate pathways. As a result, the connected pathway flow is modeled
as a bundle of capillary tubes; see case (a) in Figure 1.

2. Large-ganglion dynamics: The wetting phase is continuous, while the nonwetting phase is disconnected
and flows in the form of ganglia significantly bigger than the average pore size. The analog of this flow
regime is a core-annular flow in a capillary tube; see case (b) in Figure 1, where the length of the ganglion is
much larger than a unit cell: the nonwetting phase flows surrounded by a film of wetting phase.

3. Small-ganglion dynamics: It is intrinsically an intermittent flow regime where small disconnected ganglia of
the nonwetting phase have a size comparable to the average pore size. This flow regime can be idealized as
plug flow (elongated drop flow) in a capillary tube, namely, a sequence of taps of a continuous phase and
elongated drops, which are surrounded by a film of the continuous phase; see case (c) in Figure 1.

4. Drop traffic flow regime: The nonwetting phase is disconnected and flows in the form of a sequence drops
whose size is comparable to the capillary tube diameter; see case (d) in Figure 1.

In the following sections, we first present the upscaled equations for the case of one-dimensional flow
(section 4.1) including the limit of single phase flow, and then, we provide analytical closures for the afore-
mentioned flow regimes (connected pathway, core-annular, and plug flow) in a capillary tube analog setting.
The case of drop traffic flow will not be addressed here due to the absence, to the best of our knowledge, of
specific closures to model drag of a viscous drop flowing in a microchannel. Such closures exist in the con-
text of bubbly flow at large Eotvos number (Cazarez et al., 2010; Picchi, Strazza, et al., 2015a), where drops (or
bubbles) have an average size much smaller than the pipe diameter. Since the phase topology at large Eotvos
numbers is significantly different from the case investigated here (where the size of the bubbles is compara-
ble to that of the channel), large Eotvos number closures cannot be directly applied to flow in microchannels.
However, we expect the qualitative trend of the relative permeability curves for the drop traffic flow to be sim-
ilar to the case of small ganglia (very short plug), even if deviations are expected due to the different geometry
between drops (almost spherical) and short plugs.

4.1. One-Dimensional Macroscale Flows Equations
For one-dimensional flow, equation (17) can be simplified as follows (see Appendix C for the details)

𝜀Re

( 1⟨
u1

⟩ +
𝜙𝜔11

2

⟨
u1

⟩2

1

)
= −∇p1 + 𝜙

(f 1 + w1

)
+ 𝜀2 Re

Fr2
eg, x ∈ Ω, (18a)

𝜀ReR

( 2⟨
u2

⟩ +
𝜙𝜔22

2

⟨
u2

⟩2

2

)
= −∇p2 + M𝜙

(f 2 + w2

)
+ 𝜀2R

Re
Fr2

eg, x ∈ Ω, (18b)

where f 1, f 2, w1, and w2 are the interfacial shear stress and the wall shear stress terms for phases 1 and
2, respectively. An advantage of this formulation is that we are able to isolate the contribution of fluid-fluid
(interfacial terms) and fluid-wall (wall terms) interactions. As a result, incorporating the effects of pore-scale
flow regimes in the upscaled equations reduces to modeling the shear-stress terms. Also, the inertia terms
in the left-hand side (LHS) of equation (18) have been rewritten as a function of the square of the average
velocity as a Forchheimer-type term (see Forchheimer, 1901). The parameters i and the shape factor 𝜔i are
functions of the flow regimes at the pore scale, and they are defined as

i =
|Γ||i| , 𝜔i =

⟨
u3

i

⟩
Γ⟨

ui

⟩3

i

, (19)

whereΓ is the surface which bounds the volumei of the ith phase in the unit cell. In case the phase topology
and the velocity profiles at the inflow and outflow of the unit cell are known, i and 𝜔i are fully determined.
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Figure 4. Relative permeabilities of the wetting phase, K11, and the
nonwetting phase, K22, as a function of the saturation of the wetting phase,
S1, for the connected pathway flow.

4.1.1. Single-Phase Limit
In this section we show that the classical formulation of the Darcy’s law
is easily recovered as a particular case of our approach. In fact, assum-
ing one-dimensional and single-phase flow in a capillary tube of constant
diameter D and of length L with 𝜀 = D∕L ≪ 1, equation (17) reduces to
the classical Darcy’s law

𝜀Re𝜔
⟨

u
⟩2

 = 𝜀2 Re
Fr2

eg − ∇p − 32⟨u⟩. (20)

In equation (20), the Forchheimer correction is proportional to the velocity
shape factor𝜔 and to = 2(𝜀+2), which has been determined as the ratio
of the surface and the volume of the (cylindrical) capillary tube. The wall
stress term, defined in equation (C13) of Appendix C, is given by (f = 0
for single-phase flow)

w = ⟨𝝉w⟩ Γ1

 = −32⟨u⟩. (21)

The dimensionless ratio between the wetted surface and the volume occu-
pied by the fluid is Γ1∕ = 4, and the dimensionless averaged shear stress
has been obtained from the single phase friction factor relation as

⟨𝝉w⟩ =
⟨𝝉̂w⟩̂
𝜇U∕D

, (22)

where

⟨𝝉̂w⟩̂ = 1
2

fw⟨û⟩2
̂, fw = 16

Re
, Re =

𝜌⟨û⟩̂D

𝜇
. (23)

4.2. Connected Pathway Flow
We would like to emphasize that since in this flow regime each capillary tube is occupied by one phase only
(see Figure 1a), equation (18) cannot be employed (since it is derived under the hypothesis that both phases
flow in the same capillary). Therefore, the connected pathway flow regime is upscaled considering a bundle
of N capillary tubes of constant diameter D and length L (see Figure 1), while assuming that the ith phase
occupies NSi capillaries. This leads to

⟨û1⟩̂1
= −

ND2S1

32𝜇1
∇p̂1, (24a)

⟨û2⟩̂2
= −

ND2(1 − S1)
32𝜇2

∇p̂2, (24b)

where Si is the saturation. Recalling that
⟨

ui

⟩
= Si𝜙

⟨
ui

⟩
i

, the Darcy’s law in dimensionless form becomes

⟨
u1

⟩
= −

𝜙K11

32
∇p1 with K11 = S2

1, (25a)

⟨
u2

⟩
= −

𝜙K22

32M
∇p2 with K22 =

(
1 − S1

)2
, (25b)

where the length, the velocity, and the shear stress scales are the tube diameter D, U, and 𝜇1UN∕D, respec-
tively. The relative permeabilities K11 and K22 are plotted in Figure 4 as a function of the saturation of the
wetting phase.

4.3. Core-Annular Flow in a Capillary Tube
Laminar core-annular flow is considered the basic flow regime in a capillary tube of diameter D and length L
(with 𝜀 = D∕L ≪ 1; see Figure 1b): the wetting phase flows in the annulus while the nonwetting phase flows
in the core. In this case, equations (18) yields

𝜀Re1𝜔1

⟨
u1

⟩2

1
= −∇p1 + 32

(
M
⟨u2⟩2

− 2⟨u1⟩1

S1
−

⟨u1⟩1

S2
1

)
, (26a)
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𝜀RRe2𝜔2

⟨
u2

⟩2

2
= −∇p2 + 32M

(
2⟨u1⟩1

− ⟨u2⟩2

1 − S1

)
, (26b)

where the subscripts 1 and 2 refer to the annulus (wetting phase) and core (nonwetting phase), respectively.
In order to construct the final form of the upscaled equations for core-annular flows, we have adapted the clo-
sures commonly used in one-dimensional averaged models for pipe flow. Specifically, the shear stress terms
in the upscaled equations (defined by equation (C13)) have been constructed similarly to the closures pro-
posed by Ullmann and Brauner (2004): such closures, once implemented in a one-dimensional average model,
reproduce the exact laminar solution at steady state and fully developed conditions (i.e., flat interface in the
direction of the pipe axis). In the context of the proposed upscaling we obtain

f 1 = −⟨𝝉 f ⟩1

Γ12

1
, and w1 = ⟨𝝉w⟩1

Γ1

1
, (27a)

f 2 = ⟨𝝉 f ⟩2

Γ12

2
, and w2 = 0, (27b)

where

⟨𝝉w⟩1
=

⟨𝝉̂w⟩̂1

𝜇1U∕D
, ⟨𝝉 f ⟩1,2

=
⟨𝝉̂ f ⟩̂1,2

𝜇1U∕D
(28)

are the average dimensionless shear stress at the wall and at the fluid-fluid interface, where

⟨𝝉̂w⟩̂1
= −1

2
𝜌1f1⟨û1⟩2

̂1
with f1 = 16

Re1
, Re1 =

𝜌1D̂1⟨û1⟩̂1

𝜇1
, (29a)

⟨𝝉̂ f ⟩̂1,2
= −1

2
𝜌2f2⟨û2⟩̂2

(⟨û2⟩̂2
− 2⟨û1⟩̂1

)
with f2 = 16

Re2
, Re2 =

𝜌2D̂2⟨û2⟩̂2

𝜇2
. (29b)

D̂1 = S1D and D̂2 =
√

1 − S1D are the hydraulic diameters of phases 1 and 2, respectively. The dimensionless
wetted surfaces and volume occupied by the ith phase are given by Γ1∕1 = 4∕S1, Γ12∕1 = 4

√
1 − S1∕S1,

and Γ12∕2 = 4
√

1 − S1∕(1 − S1).

In addition, since the core-annular flow regime has been postulated, Figure 1b, the coefficients in the Forch-
heimer terms (LHS of the upscaled equation (26)) can be modeled depending on the spatial distribution of
the phases: the nonwetting phase occupies a cylinder of radius equal to the square of the saturation

√
S2 and

length L, while the wetting phase occupies the annulus of internal and external radii
√

S2 and 1, respectively
and of length L. The coefficients1 and2, which are the ratio between the surface and the volume occupied
by each phase in the unit cell (see equation (19)), are fully determined, and are given by

1 = 2𝜀 +
4(1 + S1)

S1
, and 2 = 2𝜀 + 4, (30)

while the shape factors 𝜔1 and 𝜔2 should be determined accordingly to equation (19) and depend on the
velocity profiles at the inflow and the outflow sections of the unit cell; more technical details are available
in Appendix C. For the particular case of fully developed core-annular flow, the shape factor integrals vanish
since the contribution at the inflow boundary balances the one at the outflow boundary (the inlet and outlet
velocity profiles are the same), but in the general case of not fully developed flow, they need to be modeled.
Since their calculation requires information on the velocity profiles and the saturation, it is worth showing
the trends of 𝜔1 and 𝜔2 in the limit of L → 0, namely, the case of a cross-section of the capillary tube, where
Γ = 1,2 (see Figure 5a). In this case, the shape factors can be analytically determined from their definition
in equation (19) under the hypothesis of laminar velocity profiles of core-annular flow (the analytical solution
for laminar can be found in Ullmann & Brauner, 2004). We obtain that 𝜔1 (wetting phase) is constant and
independent from the fluid saturation, that is,𝜔1 = 2, while𝜔2 (nonwetting phase) depends on the saturation
and the viscosity ratio of the system. Furthermore, 𝜔2 reaches the limiting values of 1 and 2 for the limit cases
of vanishing nonwetting phase (S2 → 0) and thin film of wetting phase (S2 → 1) phase, respectively.

In absence of waviness at the interface (i.e., fully developed core-annular flow), the two phases have the same
pressure gradient (∇p1 = ∇p2), although they have different pressures due to the curvature of the interface
in the cross section of the tube. As a result, since terms on the RHS of equations (26) are linear with respect to
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Figure 5. (a) Shape factors 𝜔1 and 𝜔2 as functions of the saturation of the nonwetting phase S2 and the viscosity ratio
M in the limit of a capillary tube of length L → 0. (b) Relative permeabilities of the wetting phase, K11, and the
nonwetting phase, K22, as functions of the saturation of the wetting phase, S1, for core-annular flow in a capillary tube.

the average velocities, Darcy’s law is recovered as a particular case. When also the inertia terms are negligible
(sufficiently small Re and R; see Figure 3a), analytical expressions for the relative permeabilities can be derived
by rearranging equation (26) as follows

⟨
u1

⟩
= −

K11

32
∇p1 with K11 = S2

1, (31a)

⟨
u2

⟩
= −

K22

32M
∇p2 with K22 = (2MS1 − S1 + 1)(1 − S1), (31b)

p1 − p2 = 2𝜀

Ca
√

1 − S1

, (31c)

where the average curvature is ⟨𝜅⟩ = 2∕
√

1 − S1. Thus, we have obtained a formulation for the relative per-
meabilities as a result of the postulation of the flow-regime at the pore-scale including both the interaction
between the wetting phase and the wall and between the two fluids. Since the two phases have the same
pressure gradient, we do not have obtained here any of the coupling terms.
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It is worth noticing that K11 is independent of the viscosity ratio and 0 < K11 < 1, while K22 depends both on
the viscosity ratio and the saturation of the wetting phase: when the nonwetting phase (core) is more viscous
than the wetting phase (annulus), K22 may reach values larger than 1 (see Figure 5b); that is, the flux of the
nonwetting phase is greater than the flux of the nonwetting phase in the same geometry at single-phase
conditions. This is true only if the nonwetting phase is the most viscous phase (M> 1): due to lubrication
effects, when the more viscous fluid is not in contact with the wall, the resulting effect is similar to having an
effective slip at the solid wall (see Berg et al., 2008). Additionally, equation (31b) shows that K22 in a capillary
tube is unbounded for M that goes to infinity. In a real porous medium these conditions may be realized only
in localized regions (i.e., in proximity of a drop surrounded by a wetting layer of a less viscous fluid) and not
over a large portion of the porous matrix. As a result, while theoretically possible, the macroscopic relative
permeability of the nonwetting phase in a real porous medium is, often, not greater than 1. Finally, in the limit
M → 0, K22 = (1− S1)2, which matches the relative permeability of the connected pathway flow. Importantly,
the previous closures are consistent with the single-phase limit when either one of the phases is absent, in
particular, when S1 → 1, K22 → 0, and K11 → 1; or when S1 → 0, K22 → 1, and K11 → 0.

4.4. Plug Flow in a Capillary Tube
The plug flow regime consists in a sequence of taps of a continuous phase and elongated bubbles (or elon-
gated drops in liquid-liquid systems), which are surrounded by a film of the continuous phase (plug region;
see Figure 1c). This flow regime has been extensively studied both in large pipes (see Fabre & Line, 1992;
Picchi, Manerba, et al., 2015b) and in capillary tubes (see, e.g., Abu-Al-Saud et al., 2017; Jovanovic et al.,
2011; Kawahara et al., 2002; Tsaoulidis & Angeli, 2016; Ullmann & Brauner, 2007; Wegmann & von Rohr, 2006;
Yagodnitsyna et al., 2016). Plug flow is also intrinsically an intermittent flow regime: since the bubble (or drop)
length is not constant (see Hout et al., 1992), we refer to the average length of the elongated bubble; see, for
example, the experimental works by Kashid and Agar (2007) and Tsaoulidis and Angeli (2016).

Here we focus on plug flow in a capillary tube of diameter D and length L where the bubble (or drop) is suffi-
ciently long to form a region with a uniform film thickness (see Picchi et al., 2018). Specifically, we assume that
the unit cell Y contains an average (representative) plug unit cell, and we model (i) the plug region of length𝓁
(see Figure 1c) as a (local) region of fully developed core-annular flow and (ii) the single-phase region (1−𝓁 in
Figure 1c) as single phase flow of the wetting phase. Therefore, equation (18) for the plug flow regime yields

𝜀Re1𝜔1

⟨
u1

⟩2

1
= −∇p1 + 32𝓁

(
M
⟨u2⟩2P

− 2⟨u1⟩1P

S1P
−

⟨u1⟩1P

S2
1P

)
+ 32(1 − 𝓁)⟨u1⟩1S

, (32a)

𝜀RRe2𝜔2

⟨
u2

⟩2

2
= −∇p2 + 32M𝓁

(
2⟨u1⟩1P

− ⟨u2⟩2P

1 − S1P

)
, (32b)

p1 − p2 =
⟨𝜅⟩𝜀

Ca
where ⟨𝜅⟩ ∼ 𝓁

1√
1 − S1P

, (32c)

where the subscripts P and S refer to the plug and single-phase regions, respectively. Specifically, 1P and 2P

are the dimensionless volume occupied by the phase 1 and 2 in the plug region, respectively (1P ∪1S = 1

and2 = 𝓁2P), while1S is the dimensionless volume occupied by the phase 1 in the single phase region. We
model the stress terms as core-annular flow in the plug region (𝓁 in Figure 1) and single phase of the wetting
phase in the (1 − 𝓁) region according to the definition provided in equation (C13) of Appendix C, that is,

f 1 = −𝓁⟨𝝉 f ⟩1P

Γ12P

1P
, and w1 = 𝓁⟨𝝉w⟩1P

Γ1P

1P
,+(1 − 𝓁)⟨𝝉w⟩1S

Γ1S

1S
, (33a)

f 2 = 𝓁⟨𝝉 f ⟩2P

Γ12P

2P
, and w2 = 0. (33b)

The saturation of the wetting phase over the unit cell is given by

S1 = 𝓁S1P + 1 − 𝓁, (34)

where S1P is the saturation of the wetting phase within the plug region, and it is related to the thickness of
the annulus surrounding the bubble, namely, the film thickness h, by the following relation

h = 1 −
√

1 − S1P. (35)

PICCHI AND BATTIATO 13



Water Resources Research 10.1029/2018WR023172

Note that the film thickness h is the only free parameter of the problem and can be determined, for example,
by experiments (see, e.g., Roumpea et al., 2017) or by theory-based correlations (see Bretherton, 1961; Hodges
et al., 2004; Picchi et al., 2018), where the film thickness is expressed as a function of the capillary number and
the dimensionless parameters of the system, h = h(Ca,M,…). The problem then is closed with the following
relation between the average velocities:

⟨u1⟩1
= 𝓁⟨u1⟩1P

+ (1 − 𝓁)⟨u1⟩1S
, (36a)

⟨u2⟩2
= 𝓁⟨u2⟩2P

, (36b)

where ⟨u1⟩1S
is the average velocity in the single-phase region, (1 − 𝓁), equal to the mixture velocity (Fabre

& Line, 1992; Picchi et al., 2018) as

⟨u1⟩1S
= S1P⟨u1⟩1P

+ (1 − S1P)⟨u2⟩2P
. (37)

Under the assumption that inertia terms (LHS of equation (32)) are negligible and the macroscopic pressure
gradient is the same for both phases, we recover the two-phase Darcy’s law and analytical expressions for the
relative permeabilities: ⟨

u1

⟩
= −

K11

32
∇p1, (38a)

⟨
u2

⟩
= −

K22

32M
∇p2, (38b)

K11 =
[
(1 − M) S1P − S3

1P + S2
1P

]
S1 + S1P

(
S1P − 1

) (
S2

1P + M − 1
)

M
[

S1

(
1 + S1P − S2

1P

)
+ S3

1P − S2
1P − S1P − 1

] S1 (38c)

K22 =
[

S4
1P − S3

1P + (2M − 1) S1P + 1
]
− S5

1P + S4
1P + (1 − 2M)S1P − 1(

1 − S1P

) (
S2

1P − S1P − 1
)

S1 +
(

S1P − 1
) (

S3
1P − S2

1P − S1P − 1
) (S1 − 1). (38d)

Note that the relative permeabilities, K11(S1, S1P,M) and K22(S1, S1P,M), plotted in Figure 6, depend only on
the unit cell saturation, S1, the saturation in the plug region S1P (i.e., the film thickness h; see equation (35)),
and the viscosity ratio M. Furthremore, the structure of the relative permeabilities is consistent with the one
obtained for the core-annular flow regime: when M> ∼ 0.4, the relative permeability curve of the nonwetting
phase, K22, for the core-annular flow regime represents an upper bound for the relative permeability of plug
flow at a fixed saturation (see Figures 6). However, the trend is opposite for M <∼ 0.4, where the wetting
phase flux is higher for the plug flow regimes, as expected. In other words, at a fixed saturation, K22 for the
plug flow regime is bounded by the one for core-annular flow. Moreover, for sufficiently low viscosity ratios,
M <∼ 0.4, increasing the film thickness yields to a lower relative permeability of the nonwetting phase, while
the behavior is opposite for M> ∼ 0.4.

It is worth highlighting the expected behavior (i) in the limit of thin film surrounding the bubble, h → 0
and S1P → 0, where one obtains K11 = S2

1∕M(1 − S1) and K22 = (1 − S1), and (ii) in the limit of vanishing
nonwetting phase, where K11 → 1 for both S1 → 1 and S1P → 1, consistently to the single-phase case.
In addition, conditions where the relative permeability of the nonwetting phase reaches values bigger than
unity are theoretically possible also for the plug flow regime (see Figure 6).

4.5. Impact of Flow Regimes on the Relative Permeability
In many applications it is of interest to quantify how much of the nonwetting phase can be transported
through the porous matrix, and based on our previous analysis, we have shown that the flux (i.e., the average
velocity) of the nonwetting phase is strongly affected by the flow regimes at the pore scale. Here, we inves-
tigate the impact of pore-scale flow regimes on the relative permeability curves. Specifically, we compute, at
a fixed saturation, the relative error between the relative permeability for core-annular flow and those in the
plug flow and connected pathway regimes, that is,

eK22
=

|K22,PLUG − K22,CAF|
K22,CAF

, eK22,CP
=

|K22,CP − K22,CAF|
K22,CAF

, (39)

where K22,CAF, K22,PLUG, and K22,CP are the relative permeabilities of the nonwetting phase for core-annular flow
(CAF), plug flow (PLUG), and connected pathway (CP) flow regimes given by equations (31b), (38d), and (25b),
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Figure 6. Relative permeabilities of the wetting phase, K11, and the nonwetting phase, K22, as functions of the
saturation of the wetting phase, S1, and the film thickness surrounding the bubble, h, for plug flow in a capillary tube for
the case of M = 1 (a, b), M = 2 (c, d), and M = 0.1 (e, f ). CAF refers to core-annular flow.
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Figure 7. Relative error between the relative permeability of the nonwetting phase, K22, for the plug flow compared to
the core annular-flow as a function of the saturation of the wetting phase, S1, and the film thickness surrounding the
bubble, h, for (a) M = 1, (b) M = 0.1, and (c) M = 2. (d) Relative error for the connected pathway flow compared to the
core annular flow as a function of the saturation of the wetting phase, S1, and the viscosity ratio of the system, M .

respectively. The trends of the relative error of the plug flow, eK22
, are presented in Figure 7 as a function of

the saturation and the viscosity ratio. In case of iso-viscous fluid, that is, M = 1, the error is still considerable
(up to 40%) for low saturation of the wetting phase, and it reaches a value close to 100% at higher saturations.
For a very thin film of the wetting phase surrounding the bubble, h → 0, we obtain that, at low saturation, the
difference between the core-annular and plug flow relative permeability curves is maximal. The discrepancy
increases with an increase of the viscosity ratio. Furthermore, for systems characterized by low viscosity ratios
(M = 0.1, case (b) Figure 7), differences in the predicted relative permeability is considerable in the whole
range of saturation, and it reaches a peak larger than 100% at high saturations. The case of a very thin film is
also in this case the worst scenario.

By inspection of the discrepancies between the relative permeability for the core-annular and for the con-
nected pathway flow regime, we see that the error is almost 0 when the viscosity ratio is sufficiently small,
as shown in Figure 7d (eK22,CP

approaches 0 for M → 0). Therefore, if the wetting phase is much more viscous
than the nonwetting phase such as for water-steam or air-water systems, the predicted relative permeability
will be the same both for connected pathway and core annular flow. Otherwise, the error is considerable in
the whole range of saturations at viscosity ratios close to or larger than 1.

From the analysis of the relative errors, we can conclude that the impact of pore-scale flow regimes on relative
permeabilities is significant. In fact, not properly accounting for the phase topology at the pore scale may lead
to severe mispredictions of the relative permeability and, as a consequence, of the filtration velocity.
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5. Conclusions
Recent experimental and numerical results (see Armstrong et al., 2016; Avraam & Payatakes, 1995a) have
identified four possible pore-scale flow regimes (i.e., large-ganglion dynamics, small-ganglion dynamics, drop
traffic flow, and connected-pathway flow) which strongly affect the macroscopic filtration velocity. Since the
penetration of existing upscaled models, such as the methods which account for the evolution of fluid-fluid
interface (e.g., Gray et al., 2015; Gray & Miller, 2010; Hilfer, 1998; Jackson et al., 2009; Niessner & Hassanizadeh,
2008), has been hindered by the difficulties of their parametrization, in this work, we have investigated the
impact of pore-scale flow regimes, that is, the topology of flowing phases, on the upscaled equations for
two-phase flow in porous media. Specifically, we propose a homogenization framework that allows one to
derive upscaled equations that are regime specific. We aim at incorporating the interactions between the
flowing phases and the solid while retaining simplicity of the final formulation.

To achieve such a goal, we formulate the pore-scale problem (Navier-Stokes equations) of two incompress-
ible fluids in a porous medium, we identify the relevant dimensionless parameters, and we derive a new set
of macroscopic equations by means of multiple-scale expansions. Differently from previous works, we pro-
ceed by postulating the pore-scale flow regimes and by proposing an analogy between such flow regimes
in a real porous medium and two-phase flow in a capillary tube. Using this analog, we analytically determine
the effective parameters of the upscaled equation. Specifically, we model the connected-pathway flow as a
bundle of capillary tubes, while large-ganglion dynamics and small-ganglion dynamics have been modeled
in analogy with the core-annular flow and the plug flow in a capillary tube. This approach allows us to reduce
the complexity due to the geometry of the flowing phases and, at the same time, to retain the physics behind
the interaction between the phases. In addition, we show that our approach reduces to the two-phase Darcy’s
law as a particular case, where we obtained analytical expressions for the relative permeability of the wetting
and the nonwetting phase for each flow regime (i.e., connected pathway, core-annular flow, and plug flow).

Our analysis leads to the following major conclusions:

1. We propose regime-specific upscaled equations for the basic pore-scale flow regimes. Their effective param-
eters are determined while accounting for the phase topology. The relative permeabilities for the connected
pathway flow regime depend only on the saturation, while the ones for the core-annular flow depend also
on the viscosity ratio. Modeling of the plug flow requires one additional closing parameter, namely, the film
thickness which surrounds the bubble (or drop) at the pore scale.

2. We show that the lack of two-phase model predictive capabilities is accentuated when flow regimes are not
taken into account: differences in the relative permeability between the core-annular flow and the plug flow
regimes at a fixed saturation may be significant. In fact, not accounting for the pore-scale flow regimes can
lead to severe mispredictions of filtration velocity in the multiphase flow context.

3. We also investigate the applicability conditions for the proposed upscaled equations in terms of phase dia-
grams based on the order of magnitude of relevant dimensionless numbers (i.e., Reynolds, capillary, Froude
numbers, and the viscosity and density ratio). Interestingly, we obtained that the capillary number alone is
not sufficient to classify the system, but the average pore-scale curvature plays a significant role. In particu-
lar, the inequality of the macroscopic pressure is recovered only if the ratio of the capillary number and the
pore-scale average curvature is within a specific range. We also investigated the limitations of the classical
two-phase Darcy’s law.

Notwithstanding the simplicity of the configuration investigated (flow in a capillary tube), this analysis pro-
vides a framework to quantify the importance of topology of the flowing phases on relative permeability
estimates. Generalization of the proposed analytical expressions linking pore-scale topology of the flowing
phases and their viscosity ratios with relative permeability and saturation to real porous media is subject of
current investigations.

Appendix A: Multiple-Scale Expansions of Navier-Stokes Equations

Replacing the expanded variables (equation (11)) and the dimensionless numbers (equation (13)) into the
Navier-Stokes equations (equations (5b) and (5c)) and substituting the following relations for the spatial
differential operators
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∇ = ∇x + 𝜀−1∇y ,

∇⋅ = ∇x ⋅ +𝜀−1∇y⋅ ,

∇2 = ∇2
x + 𝜀−2∇2

y + 2𝜀−1
(
∇x ⋅ ∇y

)
, (A1)

we obtain

𝜀1+𝛼
𝜕
(

u(0)
1 + 𝜀u(1)

1

)
𝜕s

+ 𝜀2+𝛼
(

u(0)
1 + 𝜀u(1)

1

)
⋅
(
∇x +

1
𝜀
∇y

)(
u(0)

1 + 𝜀u(1)
1

)
=

− ∇x

(
p(0)

1 + 𝜀p(1)
1

)
− 1

𝜀
∇y

(
p(0)

1 + 𝜀p(1)
1

)
+ 𝜀2∇2

x

(
u(0)

1 + 𝜀u(1)
1

)
+ ∇2

y

(
u(0)

1 + 𝜀u(1)
1

)
+ 2𝜀

(
∇x ⋅ ∇y

) (
u(0)

1 + 𝜀u(1)
1

)
+ 𝜀2+𝛼−2𝛽eg = 0,

(A2a)

𝜀1+𝛾+𝛼
𝜕
(

u(0)
2 + 𝜀u(1)

2

)
𝜕s

+ 𝜀2+𝛾+𝛼
(

u(0)
2 + 𝜀u(1)

2

)
⋅
(
∇x +

1
𝜀
∇y

)(
u(0)

2 + 𝜀u(1)
2

)
=

− ∇x

(
p(0)

2 + 𝜀p(1)
2

)
− 1

𝜀
∇y

(
p(0)

2 + 𝜀p(1)
2

)
+ 𝜀2+𝛿∇2

x

(
u(0)

2 + 𝜀u(1)
2

)
+ 𝜀𝛿∇2

y

(
u(0)

2 + 𝜀u(1)
2

)
+ 2𝜀1+𝛿 (∇x ⋅ ∇y

) (
u(0)

2 + 𝜀u(1)
2

)
+ 𝜀2+𝛾+𝛼−2𝛽eg = 0.

(A2b)

Similarly, the expanded continuity equations (equation (5a) yield

∇x ⋅
(

u(0)
1 + 𝜀u(1)

1

)
+ 1

𝜀
∇y ⋅

(
u(0)

1 + 𝜀u(1)
1

)
= 0, (A3a)

∇x ⋅
(

u(0)
2 + 𝜀u(1)

2

)
+ 1

𝜀
∇y ⋅

(
u(0)

2 + 𝜀u(1)
2

)
= 0. (A3b)

Expanding the normal and tangential shear stress continuity boundary condition at the fluid-fluid interface
(equations (7d) and (7e)), we obtain(

p(0)
1 + 𝜀p(1)

1 − p(0)
2 + 𝜀p(1)

2

)
I + 𝜀2n ⋅

[
∇x

(
u(0)

1 + 𝜀u(1)
1

)
+ 1

𝜀
∇y

(
u(0)

1 + 𝜀u(1)
1

)
(A4)

+ ∇x

(
u(0)

1 + 𝜀u(1)
1

)T
+ 1

𝜀
∇y

(
u(0)

1 + 𝜀u(1)
1

)T
− 𝜀𝛿∇x

(
u(0)

2 + 𝜀u(1)
2

)
− 𝜀𝛿−1∇y

(
u(0)

2 + 𝜀u(0)
2

)
− 𝜀𝛿 ∇x

(
u(0)

2 + 𝜀u(1)
2

)T
− 𝜀𝛿−1∇y

(
u(0)

2 + 𝜀u(1)
2

)T
]
⋅ n = −𝜀1−𝜂+𝜃

(
𝜅
(0)
1 + 𝜀𝜅

(1)
1

)
on Γ12,

t ⋅
[
∇x

(
u(0)

1 + 𝜀u(1)
1

)
+ 1

𝜀
∇y

(
u(0)

1 + 𝜀u(1)
1

)
+ ∇x

(
u0

1 + 𝜀u(1)
1

)T
+ 1

𝜀
∇y

(
u0

1 + 𝜀u(1)
1

)T
(A5)

− 𝜀𝛿∇x

(
u(0)

2 + 𝜀u(1)
2

)
− 𝜀𝛿−1∇y

(
u(0)

2 + 𝜀u(1)
2

)
− 𝜀𝛿∇x

(
u(0)

2 + 𝜀u(1)
2

)T

−𝜀𝛿−1∇y

(
u(0)

2 + 𝜀u(1)
2

)T
]
⋅ n = 0 on Γ12.

Appendix B: Reformulation of the Derivation of the Two-Phase Darcy’s Law

The two-phase Darcy’s law is obtained by homogenization via multiple-scale expansions of the Stokes
equations for both phases, namely, neglecting time derivatives and inertia terms in the Navier-Stokes
equations. Equation (5) is expanded, as shown in Appendix A, while imposing that 𝛼 >−1 and 𝛼 + 𝛾 < −1.
Collecting terms of like-powers of 𝜀 (𝜀−1) in equations (A2a) and (A2b), at the leading order we obtain

∇yp(0)
1 = 0, x, y ∈ 1 and ∇yp(0)

2 = 0, x, y ∈ 2, (B1)

i.e., p(0)
1 and p(0)

2 the macroscopic pressures depend only on the slow space variable x; we assume that both the
macroscopic pressures do not depend on the fast time variable s. We proceed by collecting the leading order
in the expanded normal shear stress boundary condition (equation (A4)), and recover a relation between the
macroscopic pressures

p(0)
1 − p(0)

2 = 𝜅
(0)
1 on Γ12, (B2)
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only when 1− 𝜂+𝜃 = 0. This requirement constrains the local pore-scale curvature and the capillary number,
specifically O(𝜅∕Ca) = 𝜀−1). If 1 − 𝜂 + 𝜃 > 0, the analysis gives us the equality of the macroscopic pressures,
p(0)

1 = p(0)
2 . On the other hand, we obtain that the scales are coupled for 1 − 𝜂 + 𝜃 < 0; that is, the problem

cannot be homogenized under these conditions.

Collecting the terms of order 𝜀0 in equations (A2a)–(A3b) we obtain

∇y ⋅ u(0)
i = 0, x, y ∈ i, i = 1, 2 (B3)

and

− ∇xp(0)
1 − ∇yp(1)

1 + ∇2
y u(0)

1 + 𝜀2+𝛼−2𝛽eg = 0, x, y ∈ 1, (B4a)

− ∇xp(0)
2 − ∇yp(1)

2 + 𝜀𝛿∇2
y u(0)

2 + 𝜀2+𝛾+𝛼−2𝛽eg = 0, x, y ∈ 2. (B4b)

By analysis of the order of magnitude of the terms of equations (B4a) and (B4b), we observe that for 𝛿 > 0, the
viscous terms of phase 2 disappears from equation (B4b) jumping to lower-order equations, while for 𝛿 < 0,
the scales are coupled since the viscous term jumps into the higher (leading) order. Therefore, only if 𝛿 = 0,
that is, the viscosity ratio is a term of order 1, we recover the same structure of Stokes equation with two
external driving forces (the gravitational body force and the macroscopic pressure gradient), similarly to the
two-pressure Stokes problem defined during the homogenization of single-phase flow (see Auriault & Adler,
1995). In a large number of applications the viscosity of the two fluids is comparable, except in the context of
very viscous and heavy oil or geothermal reservoir, where the viscosity difference between the liquid water
and the steam can be considerable depending on temperature and pressure conditions. We also obtain that
the gravitational body force should be accounted only for 2 + 𝛼 − 2𝛽 = 0 and 2 + 𝛾 + 𝛼 − 2𝛽 = 0 , while it can
be neglected (microgravity conditions) in case 2 + 𝛼 − 2𝛽 > 0 and 2 + 𝛾 + 𝛼 − 2𝛽 > 0.

The boundary conditions for the 𝜀0 order problem yield(
p(1)

1 − p(1)
2

)
I + n ⋅

[
∇yu(0)

1 + ∇yu(0)T

1 − 𝜀𝛿
(
∇yu0

2 + ∇yu(0)T

2

)]
⋅ n = 𝜅

(1)
1 on Γ12, (B5a)

t ⋅
[
∇yu(0)

1 + ∇yu(0)T

1 − 𝜀𝛿
(
∇yu(0)

2 + ∇yu(0)T

2

)]
⋅ n = 0 on Γ12, (B5b)

u(0)
i = 0 and u(0)

i ⋅ n = 0 on Γi, (B5c)

u(0)
1 = u(0)

2 on Γ12, (B5d)

where i = 1, 2 refers to phase 1 and 2, respectively. Note that the viscous terms in both the continuity of normal
and tangential shear stresses (equations (B5a) and (B5b)) are controlled by the magnitude of 𝛿. In the following
sections we will formally derive the upscaled equations and the closure problem for the two-phase case.

B1. Formulation of the Closure Problem: Definition of the Permeability Tensors
The problem at the order 𝜀0 allows us to formulate the closure problem. In fact, since equation (B4a) is linear
and well posed (see Auriault, 1987), it admits a solution of the type

u(0)
i = −ki1∇xp(0)

1 − ki2∇xp(0)
2 , x, y ∈ i, i = 1, 2, (B6)

and by analogy

p(1)
i = −ai1∇x p(0)

1 − ai2∇xp(0)
2 + p̄i, x, y ∈ i, i = 1, 2, (B7)

with ⟨aij⟩ = 0. Substituting these relations into equations (B4a) and (B4b), while assuming microgravity con-
ditions, we collect the macroscopic pressure gradients and obtain the following local (unit-cell) problems for
the closure variables kij(y): {

∇2
y k11 + I − ∇ya11 = 0

∇2
y k12 − ∇ya12 = 0

{
∇y ⋅ k11 = 0
∇y ⋅ k12 = 0

y ∈ 1, (B8a)

{
∇2

y k22 + I − ∇ya21 = 0

∇2
y k21 − ∇ya21 = 0

{
∇y ⋅ k21 = 0
∇y ⋅ k22 = 0

y ∈ 2, (B8b)

subjected to the 𝜀0 order boundary conditions (equations (B5a)–(B5d)). Thus, kij(y) is the solution of the local
problem whose uniqueness has been demonstrated by Auriault (1987).
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B2. The Upscaled Equations
The two-phase Darcy’s law is recovered by averaging equation (B6) over the unit cell Y :

⟨ui⟩ = −Kii∇xp1 − Ki2∇xp2, x ∈ Ω, i = 1, 2, (B9)

where pi = ⟨p(0)
i ⟩ is the macroscopic pressure. The permeability tensors are obtained by averaging the closure

variables, that is, Kij = ⟨kij⟩. In particular, K11 and K22 are symmetrical, while the role of the viscous coupling
tensors K12 and K21 have been widely debated in the literature (see, e.g., Avraam & Payatakes, 1995b; Ayub &
Bentsen, 1999).

Finally, a conservation law for the phase saturation is obtained collecting the 𝜀0 order terms in the continuity
equations of the ith phase (equations (A3a) and (A3b)) and averaging over the unit cell Y , obtaining

1|Y| ∫i

∇x ⋅ u(0)
i dy + 1|Y| ∫i

∇y ⋅ u(1)
i dy = 0, x, y ∈ Ω, i = 1, 2. (B10)

Then, using Stokes theorem and assuming that the interface Γ12 is moving very slowly compared to both
fluids, we finally obtain a conservation law for the phase saturation (Auriault, 1987),

∇x ⋅ ⟨ui⟩ + 1|Y| ∫Γ12

u(1)
i ⋅ n dy

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜙𝜕Si∕𝜕t

+ 1|Y| ∫Γi

u(1)
i ⋅ ndy

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
=0 no-slip

= 0, x, y ∈ Ω, i = 1, 2. (B11)

Appendix C: Homogenization of the two-phase Navier-Stokes equations

In this appendix, we present the derivation of the new set of upscaled equations obtained by homogeniz-
ing the Navier-Stokes equations via multiple scales expansions. Our derivation starts from the Navier-Stokes
equation for both phases (equation (5)) and the boundary conditions (equation (7)), where the unsteady and
the inertia terms are not a priori neglected. First, we expand equation (5) (see section 3), and obtain (A2a) and
(A2b). Then, we proceed by collecting the terms at the same order.

Collecting the terms of the leading order in equations (A2a) and (A2b) and in the boundary condition,
equation (A4), we obtain

∇yp(0)
1 = 0, x, y ∈ 1 and ∇yp(0)

2 = 0, x, y ∈ 2, (C1)

p(0)
1 − p(0)

2 = 𝜀1−𝜂+𝜃𝜅
(0)
1 on Γ12. (C2)

As a consequence, p(0)
1 and p(0)

2 are the macroscopic pressures which depend only on the slow space variable
x since we assume both the macroscopic pressures do not depend on the fast time variable s. Differently from
the homogenization of the Stokes equations (Appendix B), we are able to relax some of the scale separation
constraints: the scale separation is guaranteed when 𝛼 ≤ −1, Re ≤ 1∕𝜀, and 𝛼 + 𝛾 ≤ −1, Re ⋅ R ≤ 1∕𝜀, while
the relation between the macroscopic pressure hold for 1 − 𝜂 + 𝜃 ≥ 0.

Next, we collect terms of order 𝜀0 in equations (A2a)–(A2b), and we look at the general case where the time
derivative, the inertia, and the gravity terms are present for both phases (i.e., 𝛼 = −1, 𝛾 = 0, 𝛽 = 1∕2),
obtaining

𝜕u(0)
i

𝜕s
+
(

u(0)
i ⋅ ∇y

)
u(0)

i = −∇xp(0)
i − ∇yp(1)

i + ∇2
y u(0)

i + eg, x, y ∈ i, (C3)

where i = 1, 2. We multiply each term of equation (C3) with the velocity vector u(0)
i and rearrange the nonlinear

term in a divergence form (using the zero-order continuity equation ∇y ⋅ u(0)
i = 0),

𝜕

𝜕s
E(0)

i + ∇y ⋅
(

u(0)
i E(0)

i

)
= u(0)

i ⋅
(
−∇xp(0)

i + eg

)
− u(0)

i ⋅ ∇yp(1)
i + u(0)

i ⋅
(
∇y ⋅ 𝝉

(0)
i

)
, (C4)
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where x, y ∈ i , while 𝝉
(0)
i and E(0)

i = 1∕2 |||u(0)
i
|||2

are the shear stress tensor and the kinetic energy based

on u(0)
i , respectively. The flow is subject to the boundary conditions given by equations (B5a)–(B5d).

Equation (C4) has the form of a (scalar) mechanical energy balance for the 𝜀0-order problem (i.e., a con-
servation law for the kinetic energy). Finally, we average equation (C4) over the unit cell Y and the time
period T .

By averaging of the unsteady term of equation (C4), we obtain an accumulation term i(x), which can be
neglected only at steady state conditions, and it depends on the time derivative of the kinetic energy and the
saturation only:

i(x) =
1

T|Y| ∫T ∫i

𝜕

𝜕s
E(0)

i dyds =
⟨

𝜕

𝜕s
E(0)

i

⟩
. (C5)

By averaging the nonlinear term of equation (C4) and using the divergence theorem, we obtain the Forch-
heimer term, i(x), which accounts for inertia effects over the unit cell and the time period:

i(x) =
1

T|Y| ∫T ∫i

∇y ⋅
(

u(0)
i E(0)

i

)
dyds = 1

T|Y| ∫T ∫Γ
u(0)

i E(0)
i dyds = Γ|Y|

⟨
u(0)

i E(0)
i

⟩
Γ
, (C6)

where Γ = Γi ∪ Γ12 ∪ Γin ∪ Γout is the surface which bounds the volume i of the ith phase in the unit cell
(Γin and Γout are the inflow and outflow surfaces). Note that such integral vanishes at the wall, on Γ1 and Γ2

(the flux is 0 at the wall due to the no-slip boundary condition). In this framework, i(x) can be modeled in
terms of a kinetic energy flux across the bounding surfaces of each phase. In the limit of single phase flow, the
modeling of the Forchheimer term is even simpler since we only need to know the kinetic energy flux at the
inlet and at the outlet of the unit cell. In addition, i(x) vanishes for fully developed flow or sufficiently small
Re and R ⋅ Re.

A further simplification of the Forchheimer term is obtained for the case of one-dimensional flow, where the
dependence on the average velocity becomes explicit,

i(x) =
1
2
𝜙Sii𝜔i

⟨
ui

⟩3

i
with 𝜔i =

⟨(
u(0)

i

)3
⟩

Γ⟨
ui

⟩3

i

, i =
|Γ||i| , (C7)

where 𝜔i is the shape factor which depends on the shape of the velocity profile on the bounding surfaces of
each phase, whilei is a function of the saturation only. The shape factor𝜔i is the ratio of the local velocity ele-
vated to power 3 and averaged on the bounding surfaces Γ, to the average velocity on the volume occupied
by the ith phase elevated to the power 3. The definition of the shape factors is similar to the analogous shape
factor coefficients commonly used in one-dimensional average modeling (see Picchi et al., 2014, 2017). Both
these terms are fully determined once the phase topology (i.e., the pore-scale flow regime) and the velocity
profiles are known (or assumed).

The average of the driving force terms yields

1
T|Y| ∫T ∫i

u(0)
i ⋅

(
−∇xp(0)

i + eg + ∇yp(1)
i

)
dyds = −∇xpi ⋅ ⟨ui⟩ + i + i(x), (C8)

where pi(x) is the macroscopic pressure, while the term i(x) includes the work done by the local pressure
gradient: it is negligible for zero gradient in the geometry (e.g., a constant diameter capillary tube) and flat
interface condition.i is the work done by the gravitational body force in the unit cell and over the time period
defined as

i =
1

T|Y| ∫T ∫i

u(0)
i ⋅ egdyds. (C9)

By averaging the viscous term in equation (C4), we obtain the work term,i(x), which includes the work done
by the surface forces given by

i(x) =
1

T|Y| ∫T ∫i

u(0)
i ⋅

(
∇y ⋅ 𝝉

(0)
i

)
dyds. (C10)
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This term incorporates the interaction between flowing phases (shear-stress between phases at the fluid-fluid
interface) and the solid (shear-stress t the solid wall) in the unit cell, and it strongly depends on the phase
topology (i.e., the pore-scale flow regimes). Since we would like to easily incorporate such physics, we sim-
plify i(x) such that its dependence on the average velocities, ⟨ui⟩i

, and the average shear stresses, ⟨𝝉 i⟩i
,

becomes explicit, similarly to the approach described in Lahey and Drew (1988). Specifically, we can express
i(x) as

i(x) =
⟨

u(0)
i ⋅

(
∇y ⋅ 𝝉

(0)
i

)⟩
= 𝜙Si

⟨
u(0)

i ⋅
(
∇y ⋅ 𝝉

(0)
i

)⟩
i

, (C11)

and, for the one-dimensional flow,

i(x) = 𝜙Si⟨ui⟩i

[f 1 + wi

]
+… , (C12)

where

fi = ⟨𝝉 f ⟩i

Γ12

i
, and wi = ⟨𝝉w⟩i

Γi

i
, i = 1, 2 , (C13)

with fi and wi the interfacial and the wall stress term of the ith phase, respectively, Γ12 the dimension-
less fluid-fluid surface, Γi the dimensionless fluid-wall interface of the ith phase, and i the dimensionless
volume occupied by of the ith phase. ⟨𝝉 f ⟩i

and ⟨𝝉w⟩i
are the averaged dimensionless interfacial and wall

shear stresses of the ith phase in the unit cell. This formulation of the shear stress terms has been inspired
by the widely used closures in one-dimensional average models for pipe flow (Bertodano et al., 2017). Such
closures are usually formulated in analogy with single-phase flow and only recently have been corrected to
describe friction at the fluid-fluid interface and at the solid walls accurately (see Ullmann & Brauner, 2004;
Ullmann et al., 2004). In this framework, modeling different flow regimes is straightforward: if the phase topol-
ogy is known, one can both estimate the geometrical distribution of phases (i.e., the volume, the wetted
surface, and the interfacial area as a function of the saturation) and construct the shear stress terms. For exam-
ple, if the nonwetting phase is not in contact with the wall, the wall shear-stress term of the nonwetting phase
is set zero, wi = 0, while the interfacial one, fi, should be properly modeled.

Finally, the homogenized equation of the ith phase has the following form:

i + i = −∇pi ⋅ ⟨ui⟩ − i +i + i x ∈ Ω. (C14)

A general discussion on the effect of the order of magnitude of the Reynolds number, the density and viscosity
ratio is provided in section 3.2. In addition, since all the terms in equation (C14) have been defined, we pro-
ceed by, first, postulating the phase topology at the pore-scale, and then, deriving regime-specific upscaled
equations in section 4.
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