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Flow and reactive transport problems in engineering, medical and environmental applications often
involve complex geometries. Grid based methods (e.g. finite volume, finite element, etc.) are a vital tool
for studying such problems. Cartesian grids are one of the most attractive options as they possess simple
discretization stencils and are usually straightforward to generate at roughly no computational cost. The
Immersed Boundary Method, a Cartesian based methodology, maintains most of the useful features of
structured grids, while it exhibits a great resilience in dealing with complex geometries. These features
make it increasingly more attractive to model transport in evolving porous media as the cost of grid gen-
eration reduces greatly. Yet, stability issues due to the geometry of the interpolation stencil combined
with limited studies on the implementation of Neumann (constant flux) and linear Robin (e.g. reaction)
boundary conditions have significantly limited its applicability to transport in complex topologies. We
develop a high-order compact Cartesian model based on ghost cell immersed boundary method for
incompressible flow and scalar transport subject to different boundary conditions. The accuracy test
shows at least second order of accuracy in L1; L2 and L1 norms of error. The proposed method is capable
of accurately capturing the transport physics near the boundaries for Dirichlet, Neumann and Robin
boundary conditions. We tested the method for several transport and flow scenarios, including heat
transfer close to an immersed object and mass transport over reactive surfaces.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

The ability to handle complex geometries has been a constant
challenge for the successful implementation of numerical dis-
cretization schemes. Typically, a body fitted mesh (structured or
unstructured) is needed to express the boundaries of a body
immersed in a fluid domain. Nevertheless, generating a body fitted
mesh for arbitrarily complex boundaries, as those typical of porous
media systems, is not only non-trivial, but also computationally
expensive. Au contraire, Cartesian grid-based methods can serve
as a promising alternative to body fitted grid methods. Cartesian
grids have two compelling features which render them attractive:
first, their generation is performed at relatively no cost; secondly,
since PDEs discretization is less challenging, coding and implemen-
tation efforts are greatly alleviated.

Immersed Boundary Methods (IBMs), a class of Cartesian grid
approaches first introduced by C. Peskin in 1970s [1,2], are based
on the idea of adding a force term to the momentum equation in
order to mimic the effects that solid boundaries exert on flow. A
detailed discussion of IBMs is provided in [3,4]. Since the early
work of Peskin, extensions of IBMs have been the subject of many
studies. Unlike the flow problems, development of proper IBMs to
model transport of a scalar field subject to different boundary con-
ditions is yet an open challenge [5]. Early efforts have been mainly
focused on developing accurate IBMs to enforce Dirichlet and Neu-
mann boundary conditions [6–11]. The appropriate formulation of
IBMs for more complicated Robin boundary conditions, which fre-
quently arise in conjugate boundary conditions in heat transfer
[12] and surface reaction in mass transfer problems [13–16], has
been limited to a few works of [17–20].

The ghost cell immersed boundary method (GCIBMs) is a pow-
erful platform to extend IBMs to different flow and transport prob-
lems involving undeformable boundaries. The concept of the
GCIBMs relies on the early work of Mohd-Yusof [21] as well as
[22,23]. In GCIBM, the interface separating the solid body from
the liquid is treated sharply and the force is not calculated explic-
itly. Instead by introducing specific algebraic constraints for the
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ghost cells, which are the closest solid cells to the liquid cells, the
effects of boundary conditions are imposed on the flow [24,25,4].
The algebraic constrains at the ghost cells are obtained by extrap-
olating the state variable through a polynomial passing through
the boundary and fluid points close to the boundary. The fluid
point used in the construction of the polynomial is the mirror of
the ghost point with respect to the boundary. This ensures that
the stability issues caused by the large negative coefficients in
the extrapolation formula are avoided. Several interpolating
[26,27,19,20,28,18,29–31] and extrapolating formulations [25,4]
have been developed to calculate the value at the mirror point
and ghost cells, respectively.

Here, we develop and validate a high order ghost cell immersed
boundary method that is able to handle Dirichlet, Neumann and
Robin boundary conditions. The algebraic equations for the ghost
cells ensure that the flow solver senses the existence of the bound-
ary conditions. The interpolation introduced to obtain the mirror
point has a compact stencil to ensure local reconstruction of the vari-
able at the ghost cell. Unlike [18–20], the interpolation stencil is
compact to avoid unnecessary extension of the discretization sten-
cil. The adopted stencil also removes the arbitrary choice of the dis-
tance between the mirror point and the boundary, as in [18,19].
Furthermore, the proposed formulation (i) ensures the formal accu-
racy of the scheme for different boundary conditions, i.e. the intro-
duction of the IBM treatment does not affect the order of accuracy
and, (ii) unlike for [19,18], the immersed boundary formulation is
not the limiting factor to achieve higher (i.e. third) order implemen-
tation of the equations since the biquadratic interpolation used will
maintain third order of accuracy for the ghost points.

The manuscript is organized as follows. In Section 2, we
describe the development of the immersed boundary treatment.
The proposed GCIBM is validated for flow and heat transfer over
a circular cylinder in Section 3 and the method capability to handle
different boundary conditions is verified. We conclude and sum-
marize our results in Section 4.
2. Numerical methodology

2.1. Governing equations

We consider the flow of a Newtonian, incompressible fluid with
constant properties around a solid undeformable body. The spatio-
temporal distribution of fluid velocity u x; tð Þ ¼ u1 x; tð Þ; u2 x; tð Þ;ð
u3 x; tð ÞÞ and pressure p is governed by the dimensionless incom-
pressible Navier-Stokes and continuity equations
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where x ¼ x1; x2; x3ð Þ and t are the dimensionless spatial and tempo-
ral coordinates, u and p are the dimensionless velocity vector and
fluid pressure, respectively, and Re is the Reynolds number. In (1),
and thereafter, Einstein summation convention is assumed when-
ever a repeated index appears. Eq. (1) is subject to the no-slip
boundary condition at the fluid-solid interface, Cib,

ui ¼ 0; x 2 Cib: ð2Þ
The transport of a scalar field w, e.g. temperature, concentration,

etc., is governed by a dimensionless advection-diffusion equation
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where the coefficient D ¼ PrReð Þ�1 or D ¼ Pe�1 in heat transfer and
mass transport cases, respectively, with Pe and Pr the Peclet and
Prandtl numbers.
Eq. (3) is subject to the general boundary condition on the solid-
fluid interface

�nia
@w
@xi
¼ bwþ q; x 2 Cib; ð4Þ

where n is the normal vector to the solid surface pointing toward
the fluid domain. The coefficients a;b and q allow one to account
for different types of boundary conditions: Dirichlet, Neumann or
Robin. When a ¼ 0 and b ¼ 0 boundary conditions of the first and
second kind, e.g., isothermal or isoflux surfaces, are obtained,
respectively. When a– 0 or b– 0, a boundary condition of the third
kind is recovered. The latter is routinely encountered in heat trans-
fer or mass transport problems such as convective or linear surface
reaction boundary conditions. The discretization scheme is pre-
sented in the following section.

2.2. Finite volume discretization

Eqs. (1) and (3) are discretized using a finite-volume scheme
[32,33] on a structured, non-uniform Cartesian grid. In order to
avoid the stability problems related to larger time steps, all vari-
ables are temporally updated by utilizing a fully implicit backward
Euler time integration scheme.

The Navier-Stokes Eq. (1) are solved in the primitive variables
(u; p) formulation. The primitive variables are defined on a stag-
gered grid to avoid odd-even decoupling between pressure and
velocity [34]. The velocity components are evaluated on the control
volume faces, while all other variables (e.g. pressure, temperature,
concentration) are located at the cell centers. Hence, three different
Cartesian grids are required in a two dimensional problem. The
SIMPLE algorithm [35] is adopted for pressure-velocity coupling.
SIMPLE is an iterative projection method to obtain the correct pres-
sure after the initial guess of the velocity field, so that velocity and
pressure satisfy both the momentum and continuity equations:

unþ1 � un

Dt
¼ C u�ð Þ þ Ef g unþ1� �þ Gp�; ð5Þ

where the superscripts correspond to function evaluations at times
nþ 1 and n, while u� and p� are the velocity and pressure values
from the previous SIMPLE iteration. In (5), the operators C; E and
G are defined as

C u�ð Þ ¼ u�i
d
dxi

; ð6Þ

E ¼ d
dxi

d
dxi

� �
; ð7Þ

G ¼ d
dxi

: ð8Þ

The convection and viscous terms are spatially discretized using
third order upwinding (QUICK) [36,37] and second order central
difference schemes, respectively. We adopt a similar spatial dis-
cretization for the convection and diffusion terms in the scalar
transport equation (3).

2.3. Immersed boundary treatment via ghost cells

The present algorithm employs the concept of ghost cells to
accurately implement boundary conditions. The GCIB method is
based on the preliminary classification of all nodes into fluid, solid
and ghost points, whose values are obtained using different strate-
gies outlined below. Fluid cells are all the nodes whose centers are
located inside the fluid; solid cells have their centers inside the
solids and are not directly adjacent to a fluid cell; ghost cells are
the cells inside the solid with at least one neighboring cell inside
the fluid [25].



M. Yousefzadeh, I. Battiato / International Journal of Heat and Mass Transfer 137 (2019) 585–598 587
A classification of points among these three classes, after which
the cells are flagged, is achieved through a ray-casting method
based on Jordan curve theorem: since the solid-fluid boundary is
a closed and not self-intersecting curve, the method is based on
emanating a ray from the origin of the coordinate system (given
the origin lies in the fluid domain), or any point inside the fluid
and far from the boundary, to all cell centers. If the cell center is
in the flow domain, then the ray will intersect the boundary an
even number of times. The opposite is true for solid points. The
additional case in which the cell center lays on the boundary needs
to be explicitly taken into account. Algorithm 1 features the
detailed steps of the ray-casting process.
Algorithm 1. Point Identification Algorithm

1: function POINTID X;Y ;Cibð Þ . The type of each grid point

2: for all xi; yj
� �

2 X;Yð Þf g do
3: L a ray from origin to xi; yj

� �
4: n number of intersections of L with Cib

5: if n is even then
6: F i; jð Þ  1 . flag value 1 is for fluid points

7: xi; yj
� �

2 Xf ; Yf
� �

8: else if
9: then F i; jð Þ  �1 . flag value �1 is for solid points

10: xi; yj
� �

2 Xs;Ysð Þ
11: for all xi; yj

� �
2 Xs;Ysð Þ do

12: if F iþ 1; jð Þ þ F i� 1; jð Þ þ F i; jþ 1ð Þ þ F i; j� 1ð Þ – � 4 then
13: F i; jð Þ  0 . flag value 0 is for ghost points

14: xi; yj
� �

2 Xg ;Yg
� �

15: return F
Once the tagging process is completed (as in Fig. 1), an appro-
priate formulation for each class of cells is needed. Specifically,
each variable in the fluid cells is obtained by solving an algebraic
equation obtained by discretizing the governing PDEs. Values in
the solid cells are set through an algebraic equation of the type
/ ¼ constant: this allows one to ease the implementation and
complete the final discretization matrix; in alternative, one may
choose to exclude the solid cells from the computation since they
are completely decoupled from the rest of the domain. Finally, the
algebraic equation for the ghost cell values is constructed in such a
way that their coupling with the fluid cells will guarantee that the
boundary conditions are satisfied. The boundary condition treat-
ment by means of ghost cells is described in detail in the following
section.

2.3.1. Ghost-cell immersed boundary formulation
The GCIB method is routinely employed to enforce boundary

conditions at solid-liquid interfaces. The successful implicit imple-
mentation of the boundary condition in a ghost cell framework
requires the formulation of an explicit algebraic equation for the
ghost cells. This reconstruction is carried out through a quadratic
extrapolating polynomial between the boundary and a so-called
mirror point inside the fluid.
A mirror point, Xm ¼ xm; ymð Þ, is a point that mirrors the ghost
point location along the normal line across the solid boundary,
identified by n, i.e. a ghost point and its corresponding mirror point
are equidistant from the boundary. The normal line to the bound-
ary connecting a ghost point and its corresponding mirror point
intersects the boundary at the boundary point, Xib ¼ xib; yibð Þ.

Once the mirror point is found, a unique second order polyno-
mial passing through the mirror point, the ghost cell center and
the boundary point can be obtained. Three equations are required
to uniquely define the unknown coefficients of the polynomial. We
use the values of the state variable and its derivative at the mirror
point, as well as the boundary equation at Xib for this purpose.
Although this boundary reconstruction is similar to that imple-
mented in [18], its major difference is in the way the state variables
and their derivatives values are reconstructed. An alternative
approach is to find two mirror points in the normal direction and
use them together with the boundary condition to construct the
extrapolating polynomial [19,20]. Yet, in the latter scenario, the
polynomial approximation of the local behavior of the boundary
condition deteriorates when the mirror points are far from the
boundary. Consequently, a compact discretization stencil is better
achieved by using a single mirror point value as outlined below.

Let / be the state variable to be approximated by the polyno-
mial P1 rnð Þ, i.e., / represents any of the fluid variables (e.g., veloc-
ity, temperature, etc.). We start from the boundary condition (4)
for /. Eq. (4) can be also rewritten as

�a @/
@rn
¼ b/þ q; rn ¼ 0: ð9Þ

The polynomial P1 rnð Þ estimates / as / � P1 rnð Þ þ O r3n
� �

, i.e. P1 rnð Þ
satisfies

P1 rnð Þ ¼ a2r2n þ a1rn þ a0; ð10aÞ
dP1

drn
¼ 2a2rn þ a1: ð10bÞ



Fig. 1. A 2D schematic representation of different type of the points in the domain.
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The objective is to find the vector of unknown coefficients,
a ¼ a2 a1 a0½ �T . This is obtained by solving the following system of
equations

2d 1 0
d2 d 1
0 �a �b

0
B@

1
CA

a2
a1
a0

0
B@

1
CA ¼

@/
@rn

����
m

/m

q

0
BBB@

1
CCCA; ð11Þ

where d ¼ jXm � Xibj is the distance between the mirror point and
the boundary point. The first two equations in (11) account for
the value of / and its derivative in the normal direction, while
the last equation corresponds to the boundary condition at Xib

where rn ¼ 0.
For Neumann and Robin boundary conditions, when a– 0, (11)

yields the following explicit expressions for the coefficient vector a
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with n ¼ bd=a and g ¼ qd=a. Furthermore, to guarantee that the
system of equations is not ill-conditioned, the denominator
ð2� nÞ should always be positive, i.e. n ¼ bd=a < 2 or d < 2a=b: this
suggests there exists an upper bound for the grid size close to the
solid-fluid boundary since the value of d is directly related to the
local grid size. The variable n can be thought of as a numerical
Damköhler or Nusselt number.
Once P1 rnð Þ is determined, the variable at the ghost cell center
can be obtained as follows

/g ¼ a2r2g � a1rg þ a0; rg ¼ jXg � Xibj: ð13Þ

The mirror point usually does not coincide with the grid points,
and it is interpolated from its surrounding fluid cells. Since the vec-
tor a ¼ a2 a1 a0½ �T is function of the mirror point and its derivative,
Eq. (13) provides an algebraic expression for /g in terms of values
of / at the fluid cells.

A bilinear interpolation, that uses four function evaluations at
surrounding nodes, is a common practice in the context of the
ghost cell method to determine the function value at the mirror
point [18,38,19,27,4]. This approach has, however, a number of
shortcomings. First of all, if Xg is close to the boundary, it may
not be enclosed by four fluid cell centers with one of the four
points being the ghost cell itself, see Fig. 3. Using the ghost cell
value itself in the interpolation would lead to an ill-posed system
of equations, which negatively affects both convergence and stabil-
ity [27,25]. This problem has been addressed by devising different
ad hoc solutions. In [18–20] the mirror point is relocated by
increasing d, so it will not be surrounded by the ghost cell value.
In [18], the author suggests to set d ¼

ffiffiffi
2
p

Dx, where d is essentially
treated as a free parameter: this renders the accuracy of the recon-
struction a function of the parameter value. Another method is to
use the boundary condition in the bilinear interpolation [27], and
to approximate the derivative in (9) with a lower order of accuracy.
Additionally, the bilinear interpolation approximates the value of
the derivative at the mirror point with first order accuracy: this
results in the overall accuracy reduction of the scheme.

A higher order interpolation is required to describe the flow
variables accurately and to maintain the formal order of accuracy
of the method. Therefore, in the following section we introduce a
computationally efficient bi-quadratic interpolation to determine
/m, while its uniqueness and existence are studied theoretically.



Fig. 2. The interpolation stencil for the first scenario, where all the enclosing points of the mirror point are fluid type.
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2.3.2. Bi-quadratic interpolation
Without loss of generality, we will restrict our analysis to two

dimensional domains, although the results presented here can be
straightforwardly extended to three dimensions. The mirror point
location in two dimensions can be fully characterized by three sce-
narios represented in Figs. 2–4. These correspond to the case where
(I) the ghost cell is not included in the interpolation stencil (Fig. 2),
(II) the ghost cell itself is in the interpolation stencil (Fig. 3), and
(III) the interpolation stencil includes the ghost cell itself as well
as another ghost cell (Fig. 4). Since the inclusion of another ghost
cell in the interpolation does not yield to ill-posedness [27], in
the following we will focus on excluding the ghost cell value itself.
Specifically, we will remove the point located at X0, i.e. potentially
the ghost point, from the interpolation, irrespective the case of
interest. This ensures that for case I, II or III the problem is not
ill-posed: it is worth noticing that if the ghost cell is part of the
stencil, then it can only be located at X0. Fig. 3 shows the geometry
of the discretization stencil.
Algorithm 2. Find Bi-quadratic Interpolation Stencil
1: function
BQSTENCIL F;Cib;Xg ;Yg ;X;Y

�
)

. Find
interpolation

points
2: for all xi; yj
� �

2 Xg ;Yg
� �� 


do
3: n!¼ nx;ny
� � normal to the Cib

from xi; yj
� �
4: xib; yibð Þ  The normal line
intersection with Cib
5: xM; yMð Þ  2xib � xi;2yib � yið Þ
 . Mirror points

6: We find I and J such that
xI < xM < xIþ1 and yJ < yM < yJþ1
. Mirror point
direct neighbors
7: if nx > 0 then

8: x1; x2; x5ð Þ  xIþ1; xIþ2; xIþ1ð Þ
(continued on next page)



Fig. 3. The interpolation stencil for the second scenario, where the ghost point itself is inside the bilinear interpolation stencil.
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9: xf6; xs6ð Þ  xIþ1; xIþ2ð Þ

10: else if

11: then I  I þ 1

12: x1; x2; x5ð Þ  xI�1; xI�2; xI�1ð Þ

13: xf6; xs6ð Þ  xI�1; xI�2ð Þ

14: x3; x4ð Þ  xI; xIð Þ

15: if ny > 0 then � �

16: y3; y4; y5ð Þ  yJþ1; yJþ2; yJþ1� �

17: yf6; ys6ð Þ  yJþ2; yJþ1

18: else if

19: thenJ  J þ 1� �

20: y3; y4; y5ð Þ  yJ�1; yJ�2; yJ�1� �

21: yf6; ys6ð Þ  yJ�2; yJ�1� �

22: y1; y2ð Þ  yJ ; yJ

23: df ¼ fx6 � xM; fy6 � yMð Þ

24: ds ¼ sx6 � xM ; sy6 � yMð Þ� � � �

25: df ; ds ¼ kdf k2; kdsk2

26: if df < ds then

27: x6; y6ð Þ  xf6; yf6ð Þ

28: else if df P ds then

29: x6; y6ð Þ  xs6; ys6ð Þ

30: Xi  x1; x2; x3; x4; x5; x6ð Þ

31: Xi  y1; y2; y3; y4; y5; y6ð Þ

32: return Xi;Yi;XM;YM;Xib;Yib
The value /m � P2 xm; ymð Þ þ O Dx3
� �

at Xm is calculated through
the bi-quadratic polynomial

P2 x; yð Þ ¼ c00 þ c10xþ c01yþ c11xyþ c20x2 þ c02y2; ð14Þ
up to the third order of accuracy. The polynomial can be uniquely
determined through functional evaluations at six points (in two
dimensions). The six points locations Xi;Yið Þ in the biquadratic inter-
polation are chosen as follows and can be obtained following Algo-
rithm 2. The point X0 is excluded as shown in Fig. 2; X1 and X2 are
the two closest points to X0 in the x�direction, while X3 and X4 are
the two closest points toX0 in y�direction;X5 ¼ x1; y3ð Þ, andX6 needs
to be chosen between the two points adjacent to X5, whichever is clo-
ser to themirror point. The unknown coefficients of P2 in Eq. (14) are
determined by solving the 6� 6 linear system

Ac ¼ U; ð15Þ
where

c ¼ c00 c10 c01 c11 c20 c02½ �T ð16Þ
U ¼ /1 /2 /3 /4 /5 /6½ �T ð17Þ

A ¼

1 x1 y1 x1y1 x21 y21
1 x2 y2 x2y2 x22 y22
1 x3 y3 x3y3 x23 y23
1 x4 y4 x4y4 x24 y24
1 x5 y5 x5y5 x25 y25
1 x6 y6 x6y6 x26 y26

0
BBBBBBBB@

1
CCCCCCCCA
: ð18Þ



Fig. 4. The interpolation stencil for the three scenario, where two of the enclosing points of the mirror point have ghost point type.
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LetPk R2� �
denote the space of polynomials of two variables x; yð Þ of

total degree k,

P2 x; yð Þ ¼
Xk

i¼0

Xk�i
j¼0

ci;jxiy j ¼
X

06iþj6kð Þ
ci;jxiy j: ð19Þ

The existence and uniqueness of the polynomial P2 x; yð Þ depends on
the geometry of the points in the interpolation stencil. If there is a
unique solution to an interpolation problem, then the problem is
poised [39–41]. In the following, we show that there exists a unique
solution to the interpolation problem following the algorithm that
we have suggested.

We start with

Theorem 1. Theorem on basis functions of bivariate polynomials:

A basis for Pk R2� �
is the set of functions,

x; yð Þ# xiy j 0 6 iþ j 6 kð Þ; ð20Þ
[42], and
Corollary 1.1. The dimension of Pk R2� �
is

1
2

kþ 1ð Þ kþ 2ð Þ; ð21Þ

[39], i.e. the monomials xiy j span the polynomial space Pk R2� �
[42], whose dimension is kþ 1ð Þ kþ 2ð Þ=2 [42,39]. Hence, for a
bi-quadratic polynomial in two dimensions (k ¼ 2), six points are
needed. Full proofs of Theorem 1 and Corollary 1.1 can be found
in Chapter 6 of [42]. Furthermore,
Theorem 2. Interpolation by the subspacePk R2� �
is possible on a set

of points N with cardinality 1
2 kþ 1ð Þ kþ 2ð Þ if the points lie on lines

L0; � � � ; Lk in such a way that (for each i) Li contains exactly iþ 1
points,

whose proof is available in [43,42]. Theorem 2 provides a neces-
sary and sufficient condition on the geometry of theN points so to
guarantee that the interpolation is possible, i.e. for any arbitrary set
of points, N , with cardinality 6 (i.e. k ¼ 2), a P2 x; yð Þ spanned by
P2 R2� �

on N may not exist, unless the condition stated above is
satisfied.

Importantly, the interpolation stencil proposed above satisfies
the condition of Theorem 2, since three lines L0; L1; L2 exist, as
shown in Fig. 5, i.e. the geometry of the six points guarantees the
existence of a polynomial P2 x; yð Þ spanned by the subspace
P2 R2� �

. The expression for P2 x; yð Þ can now be obtained by solving
the matrix (15) of size 6� 6. This system can be reduced to two
systems of equations of size 3� 3 each. Specifically, Eq. (14) can
be rewritten as as follows

P2 x; yð Þ ¼ c00 þ c01yþ c02y2 þ x c10 þ c11yþ c20xð Þ ð22Þ
if L2 is vertical, or as



Fig. 5. The orientation of the bi-quadratic interpolation stencil with respect to L0; L1 and L2 lines.

Table 1
Comparison between current method and other methods.

Study Ghost cell Mirror
points

Mirror points
interpolation

Pros Cons

D. Pan (2012) [18] 1D
quadratic

1 Bi-linear (i) 4 points stencil for ghost cell (i) 1st order of accuracy

1D
quadratic

2 Bi-linear (i) 2nd order of accuracy (i) Non-local stencil for ghost cells,K. Luo et al. (2016) [19]
(ii) 7–8 point stencil for ghost cells

1D
quadratic

1 Bi-quadratic (i) Local construction of ghost
cells,

(i) Slightly more computationally expensive than
[18]

Current work

(ii) Up to 3rd order of accuracy,
(iii) 6 point stencil for ghost cells
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P2 x; yð Þ ¼ c00 þ c10xþ c20x2 þ y c01 þ c11xþ c02yð Þ ð23Þ
if L2 is horizontal. The origin Xo ¼ 0;0ð Þ is to be set on either on X1

or X3, respectively. When L2 is vertical and X1 ¼ Xo; x is zero at X1;X5

and X6. Hence, Eq. (22) simplifies to

P2 0; yð Þ ¼ c00 þ c01yþ c02y2; ð24Þ
and the system of Eq. (15) for X1;X5;X6 reduces to

B1c1 ¼ U1 ð25Þ
where

c1 ¼ c00 c01 c02½ �T ; ð26Þ
U1 ¼ /1 /5 /6½ �T ; ð27Þ

B1 ¼
1 y1 y21
1 y5 y25
1 y6 y26

0
BB@

1
CCA: ð28Þ



Table 2
Simulation parameters.

Re Pr Dt

20 0.71 4� 10�6

Table 3
Boundary conditions.

Boundary u-velocity v-velocity Transfer

Left u ¼ u1 v ¼ 0 T ¼ 1

Right @u
@x
¼ 0

@v
@x
¼ 0

@T
@x
¼ 0

Top u ¼ u1 @v
@y
¼ 0

@T
@y
¼ 0

Bottom u ¼ u1 @v
@y
¼ 0

@T
@y
¼ 0

Fig. 6. L1; L2 and L1 error norm of temperature with respect to grid size for
Neumann boundary condition.

Fig. 7. L1; L2 and L1 error norm of temperature with respect to grid size for Robin
boundary condition.

Table 4
Flow parameters.

Minimum grid size, Dx 0:0125
Time step, Dt 2:5 � 10�3
a 0
b 1
q 0
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Eq. (25) defines the expressions for c00; c01 and c02. The unknown
coefficients, c10; c11 and c20, can be obtained by solving

B2c2 ¼ U2; ð29Þ
where

c2 ¼ c10 c11 c20½ �T ; ð30Þ
U2 ¼ /i � c00 þ c01yi þ c02y2i

� �
; i 2 2;3;4f g; ð31Þ

B2 ¼
x2 x2y2 x22

x3 x3y3 x23

x4 x4y4 x24

0
BB@

1
CCA: ð32Þ

A similar derivation can be followed for the case where L2 is
horizontal. In the following section we describe the numerical
implementation of the above scheme.

For the sake of completeness, Table 1 provides a comparison
between different ghost cell immersed boundary methods for general
boundary conditions. The current method has the advantage of a
local discretization and the use of the smallest possible number
of stencil points, while maintaining at least second order accuracy
for the discretization of all terms. A biquadratic interpolation is
slightly more computationally expensive. However, the reduction
of this problem to two smaller problems will resolve this issue.
Moreover, since the number of ghost points is much smaller than
the system size, the increased cost is overall negligible. We empha-
size that the proposed method guarantees at most 6 off-diagonal
elements in the row corresponding to the ghost cell in 2D, and
10 in 3D. Fewer off-diagonal elements ensure better performance
of linear solvers. This represents an improvement over existing
methods, e.g. [19], where the number of off-diagonal elements is
8 and 16 in 2D and 3D, respectively. Finally, we want to point
out that the point identification and interpolation reconstruction
are local problems which can be simply distributed to each worker
cell in possible parallel implementation. This suggests that GCIBM
does not add any major complexity to the standard finite volume
implementation of the PDEs.

3. Numerical validation and results

3.1. Flow and heat transfer past a 2D cylinder

We consider flow and heat transfer over a static 2D circular
cylinder with diameter d in a uniform flow with outer velocity
u1 ¼ 1. The center of the cylinder is placed at a distance 5d from
the inlet (left boundary), 10d from the outlet (right boundary)
and 5d from the top and bottom boundaries. The left boundary is
chosen to be far from the cylinder to avoid outlet boundary effects.
Eqs. (1)–(3) are subject to appropriate boundary conditions on the
domain external boundaries. The boundary conditions for flow and
heat transfer as well as the simulation parameters are summarized
in the Tables 2 and 3.

Furthermore, on the cylinder walls,

�nia
@w
@xi
¼ bwþ q ð33Þ

with a;b; qð Þ ¼ �1; 0;1ð Þ or a;b; qð Þ ¼ �1;1;0ð Þ, for Neumann and
Robin boundary conditions, respectively. In the following, we per-
form first a spatial accuracy test (Section 3.1.1) and then we vali-
date the code against experimental data (Section 3.1.2.1).



Fig. 8. Surface pressure coefficient for Re ¼ 20, compared with results in [44].
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3.1.1. Spatial accuracy assessment
In order to ensure that the introduction of the algebraic treat-

ment of the boundary does not alter the formal accuracy of the dis-
cretization scheme, special care is taken to retain the formal
Fig. 9. u-velocity distribution around

Fig. 10. v-velocity distribution around
second order accuracy of the developed ghost cell immersed
boundary method.

A sequence of regular Cartesian grids, with grid sizes 1
20 ;

1
40 and

1
80, is used for the grid convergence test. The converged solutions
on the 1

80 grid is adopted as the reference. Figs. 6 and 7 show the
convergence rate versus grid size in L1; L2 and L1 norms for Neu-
mann and Robin boundary conditions, respectively. The proposed
method shows a second order accurate convergence for both
boundary conditions. The line of slope 1 and 2 are also plotted,
which correspond to first and second order of accuracy.
3.1.2. Validation against experimental data
3.1.2.1. Flow problem. The Reynolds number and the Prandtl num-
ber are set to Re; Prð Þ ¼ 20;0:71ð Þ. Other parameters in the simula-
tion are summarized in Table 4. The grids used in this simulation
are locally refined near the cylinder. We should note that the NS
Stokes equation is solved in dimensionless form. The advection
time scale is adopted to non-dimentionlize the time.

We start by validating the flow solver by determining the pres-
sure (Cp) around the cylinder in terms of the angle. It is obtained by
a circular cylinder for Re ¼ 200.

a circular cylinder for Re ¼ 200.



Fig. 11. Pressure distribution around a circular cylinder for Re ¼ 200.

Fig. 12. Vorticity around a circular cylinder for Re ¼ 200.

Table 5
Boundary conditions.

Case Re Pr a b q

Dirichlet 20 0:71 0 �1 1

Neumann 20 0:71 �1 1 0

Robin 20 0:71 �1 1 0

Table 6
Comparison of Nusselt number in different studies.

Study Re Pr Nu
(Dirichlet)

Nu
(Neumann)

Nu
(Robin)

Pan (2012) 20 0:71 2:4553 2.7739 2.7202
Bharti et al. (2007) 20 0:71 2.4653 2.7788 -
Current 20 0:71 2:4614 2.7771 2.7316
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calculating the pressure and viscous forces around the cylinder as
follows

Cp ¼ 2 P � P1ð Þ
u2
1

; ð34Þ

since the IB force is not explicitly calculated. Fig. 8 shows a good
agreement between the calculated Cp and published values in the
literature [44].

The distribution of the two components of the velocity as well
as the pressure, and vorticity over a circular cylinder at Re ¼ 200,
are depicted in Figs. 9–12, respectively.

3.1.2.2. Heat transfer problem. Once the flow solution is validated,
we proceed with the solution of the heat transfer equation around
the cylinder for different boundary conditions. The simulation
parameters are summarized in Table 5. In this context, the quantity
of interest is the average Nusslet number Nu defined as

Nu ¼ 1
2pr

X
NuDS; ð35Þ

where Nu ¼ � @T
@ncyl

� �
1
Tcyl

ð36Þ

r is the radius of the cylinder and DS is the area of the surface seg-
ments. To ensure the proposed GCIBM is able to handle different
boundary conditions, we compare the calculated Nu with numerical
results available in the literature [45,44,18]. In Table 6, the calcu-
lated values of the average Nusselt numbers are compared with
previously reported values in the literature [45,18]. Our results
are in good agreement with previous published results.

3.2. Flow and transport over an array of circular cylinders in a planar
fracture

We now apply the proposed GCIBM to a more realistic scenario.
Heterogeneous surface reaction in an idealized porous medium is
computed as an example of multiple application of the proposed
GCIBM. Simulation of flow and transport in porous media is chal-
lenging since the geometry of the porous structure is often com-
plex and calls for a numerical scheme that is capable of
effectively handle complex geometries. Furthermore, chemical
(and physical) heterogeneity of the pore-structure, e.g. the pres-
ence of solid grains with different surface reactivity, often calls
for the formulation of multiscale numerical algorithms which cou-



Fig. 13. Steady state solution of the flow regimes over an array of cylinders for Re ¼ 1, v-velocity, u-velocity, pressure and streamlines (top to bottom).

Fig. 14. Concentration of the 2D solution at times t ¼ 1; t ¼ 3; t ¼ 7; t ¼ 10, and t ¼ 13 (top to bottom).

Table 7
Flow parameters.

Number of cylinders 10
Diameter of cylinders, d 1
Re 1
Da1 0:1
Da2 2
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ple precesses at different scales [46,16,14,13]. In such cases, the
primary challenge is to determine coupling conditions between
subdomains. In this context, the Immersed Boundary Method is a
desirable scheme, as the coupling is much more effortless in Carte-
sian grids.
We consider flow and solute transport in a channel occupied by
an array of cylinders. The solute undergoes a linear surface reaction
on the grain surface. This problem set up is a classical benchmark
often used to test both the capabilities of (i) mass transport solvers
and (ii) hybrid schemes [13,47]. The Reynolds number is set to 1,
which results in a Stokes flow around the cylinders as shown in
Fig. 13. The proposed GCIBM is very efficient in simulating Stokes
flows. The calculated flow field is used to model transport of a
solute subject to heterogeneous reactions on the surface of the
cylinders. Two of the cylinders have faster reaction rates, charac-
terized by Damköhler number Da2, compared to the remaining
cylinders, whose Damköhler number is Da1. The concentration dis-
tribution is shown in Fig. 14 for different temporal snapshots. The
simulation parameters are listed in Table 7. A comparison with the
results by [13, Fig. 14] show a good agreement, and demonstrate
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the algorithm capability to properly handle reactive transport in
complex topologies.
4. Conclusions

We introduced a high-order compact immersed boundary
method for different boundary conditions, based on the ghost cell
formulation. The primary advantage of the proposed method over
existing ones is a more accurate interpolation, employed to
approximate mirror points. Also, we theoretically show the exis-
tence and uniqueness of such an interpolation using approxima-
tion theory. The proposed method uses local grid points to
reconstruct the ghost cell values, and is therefore suitable for prob-
lems involving surface phenomena. The present GCIBM shows sec-
ond order accuracy for three types of boundary conditions:
Dirichlet, Neuman and Robin. The method has been successfully
validated for the classical heat transfer problem around a circular
cylinder. Finally, we demonstrate the method can be successfully
employed to model flow and reactive transport in complex porous
media: specifically we investigate the classical benchmark of flow
past an array of reactive cylinders in a long channel. Further
improvements, such as extension to three dimensional geometries
and inclusion of non-circular solid bodies, are straightforward.
Data availability

The code is available at https://github.com/mehrdadyo/IBM-
Code.
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