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Abstract
Macroscopic differential equations that accurately account for microscopic phenomena can
be systematically generated using rigorous upscaling methods. However, such methods are
time-consuming, prone to error, and become quickly intractable for complex systems with
tens or hundreds of equations. To ease these complications, we propose a method of auto-
matic upscaling through symbolic computation. By streamlining the upscaling procedure
and derivation of applicability conditions to just a few minutes, the potential for democra-
tization and broad utilization of upscaling methods in real-world applications emerges. We
demonstrate the ability of our software prototype, Symbolica, by reproducing homogenized
advective-diffusive-reactive (ADR) systems from earlier studies and homogenizing a large
ADR system deemed impractical formanual homogenization. Novel upscaling scenarios pre-
viously restricted by unnecessarily conservative assumptions are discovered and numerical
validation of the models derived by Symbolica is provided.

Keywords Upscaling · Homogenization · Symbolic Computing · Reactive Systems

1 Introduction

In recent decades, a significant intellectual investment has been made by the scientific com-
munity towards developing multiscale abstractions, numerical schemes, and related theories
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for physics-based modeling and simulation of porous media—see Battiato et al. (2019) for
a broad, yet incomplete, review. Such efforts span scientific fields and engineering applica-
tions, contributing their own flavors and specific focuses from areas including energy storage
(Li and Monroe 2020), environmental systems (Floudas et al. 2016), and medical sciences
(Wood et al. 2002; Walpole et al. 2013). The paradigm shift initiated by multiscale modeling
has produced promising results that demonstrate the handling of problems where “classical”
single-scale approaches notoriously fail to capture experimentally observed features (e.g.,
reactions in mixing-controlled chemical transformations (Knutson et al. 2007; Li et al. 2006),
anomalous transport (Tartakovsky and Neuman 1998), hysteretic behavior of capillary pres-
sure and relative permeabilities in immiscible two-phase flow (Zagnoni et al. 2010)). Yet, the
adoption and systematic utilization of multiscale models by practitioners for the purposes of
prediction, design, control, and optimization remain limited. While a combination of often
sector-specific factors contribute to this lack in deployment, the inability to reuse or gener-
alize multiscale models without considerable re-derivation for different physical scenarios
serves as a common obstacle. As a result, ample time and specialized expertise are required to
appropriately formulate each model by navigating the “cost vs. accuracy” trade-offs specific
to individual applications. Due to a scarcity in these resources, multiscale models are broadly
avoided by practitioners.

Considering applications that require computational efficiency, the re-purposing of high-
fidelity multiscale models that resolve multiple spatial and temporal scales would be deemed
unaffordable and unnecessary. For example, in vehicle battery management systems, battery
models primarily stem from equivalent circuit (EC) theory (Hu et al. 2012) and are governed
by ordinary differential equations (ODEs) in time. While high-fidelity multiscale models
involving partial differential equations (PDEs) in space and time could capture more accurate
depictions of charge and mass transport, EC models are faster to solve and allow for real-
time battery usage optimization during driving cycles (Plett 2004). However, with appropriate
formulation, spatially-averagedmultiscalemodels governed byODEs could competewithEC
models in functionality, accuracy, and system integration. Because EC models often require
parameters obtained through empirical calibration, they do not offer guarantees in predictive
error, nor seamless integration into additional systems. On the other hand, multiscale models
have the potential to resolve these shortcomings by considering averaged physical behaviors
occurring on smaller temporal and spatial scales. Though competitive multiscale models are
already available (Smith et al. 2009; Arunachalam et al. 2015, 2017;Moura et al. 2017; Perez
et al. 2017), their utilization remains in a primarily academic context, where some level of
expertise is necessary to reap their benefits.

At the opposite end of the spectrum, some practical systems are combinatorially complex
and require accurate solutions to immense systems of PDEs (e.g., PDEs with numerous
coupling source terms). In these applications, computationally efficient models are eclipsed
by those that are computationally affordable. For example, large chemical reaction networks
(CRNs) consisting of hundreds of chemical species are ubiquitous in biogeochemical reactive
systems and cellular/biological pathways (Ragsdale and Pierce 2008; Falkowski 2001). To
make the simulations of such systems computationally affordable, spatial complexities are
typically ignored andCRN topologies are used to generate large systems of coupledODEs for
modeling (Soliman and Heiner 2010; Mutlay and Restrepo 2015). However, this approach
becomes inadequate when spatial gradients cannot be ignored or presupposed, e.g., when
micro-scale mass transport limitations control the overall system reactivity. For this reason,
an alternative modeling strategy often pursued in computational fluid dynamics (CFD) is
to fully resolve both spatial and temporal scales, but limit the number of reacting species
(Pantano 2004; Maas and Pope 1992). Although this strategy leads to a manageable system
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of PDEs, the results may not accurately represent the complexity of the real-world reaction.
Therefore, multiscale modeling is suggested as a means to account for both spatial gradients
and a large number of reacting species; by averaging complex reactive transport at the micro-
scale, accurate and affordable results may be obtained at the macro-scale. However, the
inability to re-purpose developedmodels for general reactions and physical scenarios remains
an obstacle.

The limited ability to re-purpose multiscale models in combination with the variety of
model design criteria across engineering disciplines demonstrates a need for quick and
informed multiscale model development engines. Such tools could reduce, or even elimi-
nate, the required time and specialized expertise preventing practitioners from developing
multiscale models according to the cost-accuracy trade-offs specific to individual appli-
cations. As a result, the potential to standardize multiscale modeling and disseminate its
benefits would be enhanced. Due to its success in other aspects of engineering (e.g., algo-
rithmic mesh generation (Ho-Le 1988) and adaptive grid refinement (Mansell et al. 2002)),
we propose automation as an engine for generalizing and democratizing multiscale model
development. Similar to how computational physics softwares provide communal access to
numerical methods, we believe automating model development procedures could instigate
the broad adoption of multiscale modeling by practitioners due to rapid and accessible model
development strategies.

In recent decades, a number of approaches to multiscale model development known
as upscaling techniques have gained popularity (e.g., the method of volume averaging
(MVA) (Whitaker 1999), thermodynamically constrained averaging theory (TCAT) (Gray
and Miller 2014), homogenization methods (Hornung 1997)). These approaches employ
rigorous mathematical analyses of PDEs to derive upscaled equations, which consist of
enhanced mathematical coefficients that account for multiscale behaviors. Developing mul-
tiscale models via upscaling hosts a number of advantages for obtaining accurate solutions in
an efficient manner. Firstly, applicability conditions (or scaling laws for MVA (Wood 2009;
Golfier et al. 2009), permissibility conditions in TCAT (Miller et al. 2018), etc.) that ensure
the validity of the “separation of scales” assumption can be formulatedwith a priori error esti-
mates for derived models (Battiato et al. 2009). Secondly, parameter-fitting at coarser scales
is not required if sufficient information is known at finer scales (e.g., the unit-cell structure
of a porous medium). Thirdly, the possibility to construct multiscale models that seamlessly
connect adjacent scales exists (Iliev et al. 2020; Korneev and Battiato 2016), as implied in
the left branch of Fig. 1. All of these aspects appeal to diminishing the “trial-and-error” pro-
cess model developers undergo in practice. Furthermore, upon creating a synergy between
upscaling and automation, additional time could be saved due to automatic model deriva-
tion. Ultimately, the implications of combining upscaling and automation are far-reaching
for practitioners; while accelerated upscaling could provide computationally efficient models
for forward problems, it could also support the resolving of complex inverse problems (e.g.,
real-time control, iterative design, shape/topology optimization, material discovery, etc.).

Despite the benefits upscaling and automation would bring to multiscale model devel-
opment, practitioners also require effective strategies for model deployment. In the current
context, model deployment refers to a model’s ability to be implemented and resolved in
analysis. Tension has historically existed between the development and deployment stages of
modeling due to dissimilar objectives in the academic and application-based environments
wheremodels are often developed and deployed, respectively. A consequence stemming from
the differing objectives is the inconsistent level of system complexity considered in each
stage. This discrepancy has fostered differing foci and desired model features among the two
stages of modeling. For example, in physics-based multiscale model development, a general
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Fig. 1 A sketch of the workflow that connects (1) rigorous model development based on upscaling methods
(e.g., volume averaging, thermodynamically constrained averaging, homogenization, etc.) to (3) optimalmodel
deployment at different scales through (2) diagnosis criteria (e.g., applicability conditions), which guide
algorithmic refinement strategies within the validity of the different upscaling approximations being used.
Inspiration for the airplane image denoted by “(i)” was drawn from Locker (2018), the battery schematic
denoted by “(ii)” is reprinted from Vasilyeva et al. (2018) with permission from Elsevier; and inspiration for
the depictions of porous media was drawn from Battiato (2016)

objective is to precisely track the impact of small-scale physical processes across scales in
less complex systems (Battiato et al. 2019). In these often academic investigations, rigor is
desired and upscaling methods are employed analytically or with limited numerical support
to develop accuratemultiscalemodels. However, in real-world engineering applications, gen-
eral objectives involving the efficient analysis of combinatorially and geometrically complex
systems would render the development of such models extremely tedious, and their deploy-
ment intractable (e.g., PDEs of numerous non-linear terms coupled according to intricate
CRNs (Chilakapati et al. 1998) and domains of highly heterogeneous microstructure shape
and material properties). Rather than implement a rigorously developed model for complex
system analysis, practitioners would prefer models developed for optimality in deployment
with respect to sector-specific criteria and available resources (e.g., accuracy, tractability, and
computational costs). As a result, practitioners are deterred from using multiscale models
and upscaling methods, and pursue options better suited for optimal deployment.
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The misalignment between idealized and realistic problem setups complicates the coop-
eration of model development and deployment strategies, especially for upscaling methods.
However, automating model development procedures presents a unique opportunity to estab-
lish a fruitful connection between the two stages of modeling. While automating model
development via upscaling resolves the issue of manually handling lengthy mathematical
derivations, the tractability of the resulting upscaled models does not scale well with the
system complexities considered upon deployment. Nevertheless, an advantage of automat-
ing model development procedures is the ability to “pipeline” the developed models directly
into computational solvers using automated syntax conversion strategies. In conceptualizing
further, an enticing deployment strategy for models after direct transfer to a solver could
be envisioned as a “top-down” algorithmic refinement procedure, as portrayed in the right
branch of Fig. 1. By exploiting the seamless connections between upscaled models from
adjacent scales, finer-scale models could be used only within the spatio-temporal regions
where coarser-scale models cease to remain valid (Battiato et al. 2011; Yousefzadeh and
Battiato 2017). As a result, computational efficiency and affordability may be obtained while
solution accuracy is preserved for complex systems. To diagnose the validity of coarser-scale
models, a set of coarser-scale criteria could be defined and used to anticipate the violation
of finer-scale applicability conditions from coarser-scale quantities (top branch of Fig. 1).
Altogether, the harmony created between accelerated development and deployment strate-
gies with automation would provide an invaluable analysis tool for engineering industries
including defense, medicine, and energy, as their applications increasingly rely upon accurate
predictions of complex multiscale behaviors in systems involving coupled physicochemical
processes.

In light of the foreseen advantages, we aim to encourage the union between automation and
multiscale model development and deployment. Easing the bottleneck associated with multi-
scale modeling for large, complex systems enhances the perceived relevance and penetration
of multiscale modeling in the work of practitioners. While previous works have automated
the numerical upscaling of material properties (Bahmani et al. 2019), permeability of porous
media (Amaziane and Koebbe 2006), and river networks (Wu et al. 2011), we seek a general-
ized, symbolic approach to integrating automation and multiscale model development. Due
to the series of “mechanical” steps found in symbolic upscaling procedures, which render
manual upscaling implementations infeasible for complex systems, we pursue a means for
automated symbolic upscaling to push the boundaries of multiscale model development.

In this work, we focus on the left branch of Fig. 1 (namely, model development by rigor-
ous upscaling) and employ symbolic computation to automate the homogenization procedure
for systems of coupled advective-diffusive-reactive (ADR) equations. For this purpose, we
introduce Symbolica, a software for the systematic automation of symbolic upscaling. Based
on classical homogenization procedures by the method of multiple-scale expansions (MSE)
(e.g., Hornung 1997; Auriault and Adler 1995; Boso and Battiato 2013), Symbolica extends
the homogenization procedure of simple ADR systems to ADR systems of arbitrary numbers
of species and equations with linear and non-linear bulk and surface reactions. As a result,
sets of homogenized equations, their applicability conditions, and corresponding closure
problems are achieved in a timely manner with minimal human interaction. By automating
upscaling procedures and allocating cumbersome symbolic manipulations to computational
resources, large multiscale systems common in engineering applications become more prac-
tical to model and easier to optimize.

The manuscript is organized as follows. In Sect. 2, we present the problem formulation for
the advective and diffusive transport of N solutes undergoing both homogeneous and hetero-
geneous reactions in porous media. Basic definitions of averaging operators and derivations
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of fast and slow variables are also provided. In Sect. 3, we introduce our software proto-
type, Symbolica, and discuss its inputs, internal structure, and implemented strategy for
symbolic homogenization by means of MSE. In Sect. 4, we provide numerical validation of
the homogenized systems derived by Symbolica with a solution comparison between the
homogenized models and pore-scale models for three example problems of increasing com-
plexity. While two example problems stem from previously published works, allowing for
direct comparison, the third example problem demonstrates Symbolica’s ability to handle
large systems deemed manually intractable. Additionally, we report Symbolica’s uncovering
of novel upscaling scenarios previously overlooked due to association with symbolic tedium.
In particular, we find that sufficient applicability conditions posed in previous studies using
manual upscaling were unnecessarily conservative, leaving additional upscaling pathways
unexplored. We conclude with Sect. 5, where we propose generalizations of the program to
include automated closure formulations, consideration of higher-order terms, and upscaling
in time.

2 Problem Formulation

Let Ω̂ε ⊂ R
b, where b = {1, 2, 3}, be a porous medium consisting of a multi-connected

pore-space B̂ε , an impermeable solid matrix Ĝε , and a smooth interface between the two
domains Γ̂ ε . Physical gradients within this medium are assumed to be adequately described
on two separate length scales: a larger scale L̂ and a smaller scale �̂. Then, a length scale
ratio

ε ≡ �̂

L̂
(1)

is defined, where the assumption L̂ � �̂ implies ε � 1. Unless otherwise stated, hats indicate
variables with physical dimension, while variables without hats are assumed to be physically
dimensionless.

2.1 Governing Equations and Boundary Conditions

We assume the pore-space to be fully saturated with an incompressible liquid whose veloc-
ity and pressure fields are governed by the Stokes equation, the incompressible continuity
equation, and a no-slip boundary condition, such that

μ̂∇̂2ûε − ∇̂ p̂ε = 0 in B̂ε, (2a)

∇̂ · ûε = 0 in B̂ε, (2b)

ûε = 0 on Γ̂ ε, (2c)

where ûε = ûε

(
t̂, x̂

)
is the fluid velocity at time t̂ > 0 and spatial coordinate x̂ ∈ B̂ε , μ̂ is

the dynamic viscosity, and p̂ε = p̂ε

(
t̂, x̂

)
is the pressure. Here, we do not assume a specific

initial condition and only consider regions far from the boundaries of Ω̂ε , such that non-local
effects caused by macro-scale boundary conditions on Ω̂ε are negligible.

We consider the mass transport of N solutes subject to advection, diffusion, and both
homogeneous and heterogeneous reactions. Without loss of generality, we assume that each
species i , where i ∈ {1, 2, · · · , N }, can undergo both bimolecular homogeneous reactions of
the type A + B ↔ C + D in the liquid phase and heterogeneous reactions of the type
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M(l) ↔ M(s) at the liquid-solid interface. Generalization to other types of reactions is
straightforward. Within the pore-space, the transport of each reactive species is governed
by a system of ADR equations of the form

∂ ĉ(i)
ε

∂ t̂
+ ûε · ∇̂ ĉ(i)

ε − D̂(i)∇̂2ĉ(i)
ε = R̂(i)

ε in B̂ε, (3a)

R̂(i)
ε =

N∑

j=1

(−1)p
(i, j)
L K̂(i, j)

L ĉ( j)
ε +

N∑

j=1

N∑

k= j

(−1)p
(i, j,k)
NL K̂(i, j,k)

NL ĉ( j)
ε ĉ(k)

ε , (3b)

subject to

−n · D̂(i)∇̂ ĉ(i)
ε = K̂(i)

S

(
ĉ(i)ni
ε − Ĉ (i)ni

)
on Γ̂ ε, (3c)

where ĉ(i)
ε = ĉ(i)

ε (t̂, x̂) is the concentration of species i at time t̂ > 0 and spatial coordinate
x̂ ∈ B̂ε , D̂(i) is the diffusion coefficient for species i , R̂(i)

ε is the sum of all bulk reaction
terms for species i , p(i, j)

L and p(i, j,k)
NL are either 0 or 1, K̂(i, j)

L is the reaction rate constant of

the linear bulk reaction corresponding to species j in equation i , K̂(i, j,k)
NL is the reaction rate

constant of the non-linear bulk reaction corresponding to species j and k in equation i , n is
the normal vector to the liquid-solid interface pointed towards the solid, K̂(i)

S is the reaction
rate constant at the liquid-solid interface corresponding to species i , ni is a positive integer
related to the order of reaction, and Ĉ (i) is the threshold concentration of species i (Morse
and Arvidson 2002). Again, we do not assume a specific initial condition and only consider
regions far from the boundaries of Ω̂ε . While Eqs. (2a), (2b), and (2c) may be solved for the
fluid velocity and pressure fields, we focus on automating the homogenization procedure of
Eqs. (3a), (3b), and (3c) for a given ûε .

2.2 Unit-Cell Domain Formulation

We introduce a spatially-dependent variable ξ̂(x̂) ≡ x̂. Here, we scale ξ̂(x̂) with �̂ and x̂ with
L̂, such that

ξ (x) = ε−1x, (4)

where ξ(x) and x are referred to as the “fast” and “slow” variables, respectively (Hornung
1997). Then, we write any spatially-dependent function fε(x) as fε(x) = f (x, ξ(x)) and use
the chain rule when considering ∇, the total differential operator in space, to write

∇ fε ≡ ∇x f + 1

ε
∇ξ f . (5)

As shown, ∇ is defined as a sum of two differential operators in space: ∇x and ∇ξ , which
scale with 1/L̂ and 1/�̂, respectively.

Because we seek to homogenize Eqs. (3a), (3b), and (3c) using a “separation of scales”
approach, we assume ε � 1 and narrow our focus to systems accurately described as spatially
periodic on the length scale �̂. Under these restrictions, we treat ξ(x) as an independent
variable ξ uncoupled from x, and define ξ in the pore-space B of a spatially periodic “unit-
cell” domain Y . A smooth interface Γ exists within the unit-cell domain between B and the
solid impermeable matrix of the unit-cell, G (Boso and Battiato 2013). We note that B and G
should be arranged within the unit-cell domain such that a collection of contiguously placed
domains Y is representative of how B̂ε and Ĝε are arranged within Ω̂ε .
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Fig. 2 A flowchart of the homogenization procedure completed by Symbolica. The program is described in
two main parts: the preparation phase (red) and the upscaling phase (blue and green). In the preparation phase,
the system is scaled, dimensionless numbers are found, and the differential operators and dependent variables
are expanded using the “separation of scales” assumption and asymptotic expansions, respectively. In the
upscaling phase, the homogenization procedure is tested for different combinations of dimensionless number
values. As shown, the answer to all three questions in the upscaling routine must be “Yes” for Symbolica to
save the valid homogenized model before exiting the upscaling routine

In light of the unit-cell formulation, we reconsider x as an element of a fictitious model
domain Ω ≡ Ωε = Ω̂ε/L̂b, which is treated as an “�̂-averaged” continuum under the
previous assumption that ε � 1 and with the intention of averaging the reactive transport
over ξ in the unit-cell domain (Bachmat and Bear 1986). Therefore, we define averaging
operators over the unit-cell Y , its pore-volume B, and its liquid-solid interface Γ as

〈·〉 ≡ 1

|Y |
∫

B
(·) dξ , 〈·〉B ≡ 1

|B|
∫

B
(·) dξ , and 〈·〉Γ ≡ 1

|Γ |
∫

Γ

(·) dξ , (6)

respectively. Depending on b, |Y |, |B|, and |Γ | are the volumes, areas, or segments of the unit-
cell, the pore-space in the unit-cell, and the liquid-solid interface in the unit-cell, respectively.
We also note that φ = |B|/|Y | is the porosity of the unit-cell. By homogenizingADR systems
within this framework, we ultimately derive models that describe the system dynamics in an
“�̂-averaged” sense on a continuous domain at the larger scale L̂.

3 Symbolica and Automated Upscaling

Though upscaling procedures are generally comprised of routine steps, such procedures
require careful mathematical manipulation and are often costly in time. In this section, we
introduce Symbolica, a program for automating upscaling procedures. In general, Symbol-
ica works in a symbolic domain and consists of functions tailored to automate routine steps
found in symbolic upscaling procedures. This ultimately reduces the time and human inter-
action necessary to derive upscaled models. Although we use Symbolica to automate the
homogenization procedure of Eqs. (3a), (3b), and (3c), other forms of reactive source terms
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can be handled as well. Furthermore, generalization to other types of equations is possible
and relatively straightforward to include. While Symbolica is currently written in Wolfram
Mathematica (Version 12.1, 2020), it only requires a language capable of manipulating sym-
bolic objects and handling basic symbolic computations. This allows Symbolica to be quite
versatile in distribution. Finally, it is worth noting that Symbolica upscales in vector form,
and therefore, can handle 1D, 2D, and 3D geometries.

As shown in the flowchart of Fig. 2, Symbolica determines the homogenized equations
and closure problems in two phases: the preparation phase and the upscaling phase. In the
preparation phase, Symbolica scales the system and extracts dimensionless numbers from
the equations and boundary conditions. Then, considering the previous problem formulation,
dependent variables are represented as power series in terms of the small length scale ratio
ε, and differential operators are recast to consider both fast and slow variables.

After completing the preparation phase, the upscaling phase is initiated by assigning
values to the previously defined dimensionless numbers. Then, a procedure similar to that
carried out in the work of Boso and Battiato (2013) is pursued with modifications for finding
applicability conditions and considering general ADR systems with arbitrary numbers of
species and reactions. Alternative upscaling strategies, as those discussed in Auriault and
Adler (1995), Allarie and Raphael (2007), Rubinstein and Mauri (1986), and Iliev et al.
(2020), may also be implemented in this phase. Upon considering multiple combinations of
dimensionless number values, Symbolica searches the dimensionless parameter space for
upscaled equations and closure problems. As a result, homogenized models are derived in
a timely manner and with minimal human interaction. In the following subsections, further
details on the inputs, steps executed, and outputs of Symbolica are provided with respect to
the considered problem.

3.1 Inputs

The input to Symbolica includes the symbolic definition of (1) a system of equations and
boundary conditions, (2) variables, scales, and master variables, (3) dimensionless number
forms, and (4) combinations of dimensionless number values forwhich to upscale.We discuss
these inputs separately in the following.

Equations and Boundary Conditions Symbolica accepts a symbolically-formatted system of
equations and boundary conditions (Step 1 in Fig. 3). Here, we assume the system to be of
the form shown in equations (3a), (3b), and (3c).

Variables, Scales, and Master Variables For each variable used in the system, two additional
associations are required: a scale and a master variable. As implied by the subtle shading
in the left branch of Fig. 3, it is best to consider this triplet as a hierarchical structure. At
the bottom of the hierarchy, variables are defined for symbolic representation of the system
(Step 2 in Fig. 3). They are the main components manipulated by Symbolica in upscaling
procedures. Just above variables in the hierarchy are scales, which describe the magnitude
and physical dimension of an associated variable (Step 3 in Fig. 3). In general, a single scale
may be associated to multiple variables, assuming the magnitudes and physical dimensions
are appropriate. At the top of the hierarchy aremaster variables, which generalize scales and
variables based on physical dimension, or physical interpretation in the case of dimensionless
variables (Step 4 in Fig. 3). For example, as shown in Fig. 3, all concentration scales Ĉ(i) and
Ĉ (i), which scale variables ĉ(i)

ε and Ĉ (i) respectively, are associated with the concentration
master variable Ĉ due to similar physical interpretation. More formally, we define a general
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Fig. 3 A flowchart detailing the inputs to Symbolica and their use in the automated scaling and dimensionless
number finding procedures. As an input (red), the user provides equations and boundary conditions (Step 1)
using defined variables (Step 2), which are associated with scales (Step 3) and master variables (Step 4). The
master variables, and specifically the corresponding dummy elements, are then used to define dimensionless
number forms (Step 5, in green), which may be part of the input or retrieved from a previously created archive.
Symbolica then preforms the following tasks automatically (blue): scales the system using the variable-
associated scales (Step 6), recasts the dimensionless coefficients as groups of master variable dummy elements
and identifies the contained dimensionless numbers using the dimensionless number forms (Step 7), and
defines dimensionless numbers using the scales of the original dimensionless coefficients (Step 8). Here,
the master variables of the diffusion scales, reaction scales, velocity scales, length scales, and concentration
scales are D̂, K̂, Û, L̂, and Ĉ, and their dummy elements are D̂ , ˆK , Û , L̂ , and Ĉ , respectively. Also,
i = {

m ∈ Z
+ : m ≤ N

}
, N is the number of species, α = {(i, j) , (i, j, k) , (i)}, and β = {L, NL, S}

master variable Â as the set

Â ≡
{ ˆA : ˆA are scales of similar physical dimension or interpretation

}
, (7)

e.g., Ĉ ≡ {Ĉ : Ĉ = Ĉ(i) ∨ Ĉ = Ĉ (i)} in our previous example related to concentration.
In the next paragraph and in Sect. 3.2, we describe in detail the role of master variables in
Symbolica’s procedure to define dimensionless numbers.

Dimensionless Number Forms In addition to variables, scales, and master variables, general
forms of dimensionless numbers should be specified (Step 5 in Fig. 3) for Symbolica to
automatically identify and define the dimensionless numbers in a system. We characterize
a dimensionless number form as a ratio between general physical phenomena. For example,
the form of the Péclet number is a ratio between advective and diffusive transport time scales.
It is worth emphasizing that dimensionless number forms abstract dimensionless numbers
by not requiring a system, nor its scales, upon definition.

Formally, let us consider N
Â
master variables Âm definedbyEq. (7),where N

Â
≥ m ∈ Z

+.
We can then formulate all possible scale definitions of a general dimensionless number for a
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given system in the set

A ≡
{
a

( ˆA1, ˆA2, ..., ˆAN
Â

)
: ˆAm ∈ Âm, N

Â
≥ m ∈ Z

+}
, (8)

where the differing structures of the dummy element a( ˆA1, ˆA2, ..., ˆAN
Â
), as oppose to the

differing elements themselves, are considered the dimensionless number forms. As a relevant
example, we can define the master variables of diffusion scales, velocity scales, and length
scales as D̂, Û, and L̂, respectively, using Eq. (7). We can then define all possible scale
definitions of the Péclet number for a given system in the setPe ≡ {Û L̂ /D̂ : D̂ ∈ D̂, Û ∈
Û, L̂ ∈ L̂} using Eq. (8). Here, the structure “Û L̂ /D̂”, which is constructed from dummy
elements D̂ , Û , and L̂ of the diffusion scale, velocity scale, and length scale master variables
respectively, is the dimensionless number form that abstracts the Péclet number.

Because dimensionless number forms abstract dimensionless numbers, users can specify
the structures of dimensionless numbers Symbolica should define without prior knowledge
of the dimensionless numbers in a scaled system. For example, once Symbolica has scaled
a system, as in Step 6 of Fig. 3, the emerging dimensionless coefficients are investigated.
In Step 7 of Fig. 3, Symbolica recasts the dimensionless coefficients as groups of master
variable dummy elements, which are then identified as dimensionless numbers using the
dimensionless number forms. As a result, instead of defining a single dimensionless number
from the third dimensionless coefficient, Symbolica uses the dimensionless number forms
provided in Step 5 to identify the coefficient as a product of two more commonly used
dimensionless numbers (i.e., Da and η). This allows Symbolica to produce results using
dimensionless numbers that are familiar to the user for easy interpretation. Additionally,
because master variables and dimensionless number forms can be defined in an abstract
sense, it is possible to construct a general archive of dimensionless number forms to be used
for arbitrary systems. The user then only needs to associate system scales and variables to
master variables upon input.

Combinations of Dimensionless Number ValuesOnce the dimensionless numbers of a system
are identified, Symbolica probes different combinations of dimensionless number values for
homogenized systems. While these combinations may be generated by Symbolica using a
default range of values, user-defined combinations can focus Symbolica to homogenize a
few desired cases.

3.2 The Preparation Phase

Scaling the System. With an appropriate input, Symbolica begins the preparation phase by
scaling the system with the provided scales. To do this, Symbolica multiplies each term in
the system by the scales corresponding to the variables in each term. While multiple scale
combinations may be considered for an arbitrary ADR system, we consider the following for
demonstrative purposes:

ĉ(i)
ε = Ĉ(i)c(i)

ε , t̂ = L̂2

D̂
t, ûε = Ûuε,

∇̂ = 1

L̂
∇, D̂(i) = D̂D(i), R̂(i)

ε = D̂Ĉ(i)

L̂2
R(i)

ε , (9)

where Ĉ(i) is the concentration scale for species i , D̂ is the diffusion coefficient scale for all
species, Û is the fluid velocity scale, and the diffusion time scale L̂2/D̂ is used to scale t̂ .
With these scales, Eqs. (3a), (3b), and (3c) become
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∂c(i)
ε

∂t
+

(
ÛL̂
D̂

)

uε · ∇c(i)
ε − D(i)∇2c(i)

ε = R(i)
ε in Bε, (10a)

R(i)
ε =

N∑

j=1

(−1)p
(i, j)
L

(
K̂(i, j)

L L̂2Ĉ( j)

D̂Ĉ(i)

)

c( j)
ε +

N∑

j=1

N∑

k= j

(−1)p
(i, j,k)
NL

(
K̂(i, j,k)

NL L̂2Ĉ( j)Ĉ(k)

D̂Ĉ(i)

)

c( j)
ε c(k)

ε ,

(10b)

−n · D(i)∇c(i)
ε =

(
K̂(i)

S L̂Ĉ(i)ni−1

D̂

)

c(i)ni
ε −

(
K̂(i)

S L̂Ĉ (i)ni

D̂Ĉ(i)

)

on Γ ε. (10c)

Due to the complexity of the dimensionless coefficients in Eqs. (10a), (10b), and (10c), many
dimensionless numbers can exist in ADR systems of multiple species. Additionally, dimen-
sionless numbers may repeat throughout a system due to reoccurring reaction rates and the
use of similar concentration scales. To maintain unique dimensionless number definitions,
previously defined dimensionless numbers must be consulted prior to defining additional
dimensionless numbers. Because these difficulties make manual dimensionless number defi-
nition tedious, prone to error, and time-consuming for large ADR systems, it is advantageous
to use the automated procedure implemented in Symbolica for finding and defining the
dimensionless numbers of a system.

Finding Dimensionless Numbers After scaling the system, Symbolica is tasked with recast-
ing the dimensionless coefficients, shown in the parentheses of Eqs. (10a), (10b), and (10c),
in terms of dimensionless numbers. As demonstrated in Step 7 of Fig. 3, Symbolica first
employs the user-defined associations between scales and master variables to recast the
dimensionless coefficients as groups of master variable dummy elements. Then, Symbolica
compares multiple products and quotients of dimensionless number formswith each group of
master variable dummy elements to recognize the dimensionless numbers appearing within
each group. Finally, Symbolica compares the scales of the identified dimensionless num-
bers in each group with those of previously defined dimensionless numbers to decide if new
dimensionless numbers should be defined or if previously defined dimensionless numbers
have appeared in the groups. As shown in Step 8, the result is a set of unique dimensionless
numbers defined using system scales without prior knowledge of the dimensionless numbers
appearing in the system. In the case a dimensionless coefficient cannot be recast in terms of
a single dimensionless number, Symbolica attempts to use the least number of dimension-
less numbers, up to a maximum threshold defined by the user, to recast the dimensionless
coefficient. If the threshold is reached, Symbolica stops the procedure and notifies the user.

Expanding Operators and Dependent Variables With the scaled system, Symbolica adopts
the previous problem formulation, where length scales L̂ and �̂ are assumed to exist. The
input system is then considered with the total differential operator in space ∇, as shown in
Eq. (5), and with the unit-cell problem traversed by ξ . Additionally, we note that Symbolica
is capable of defining further variables in time according to relevant dimensionless numbers
found in the system. For example, given a defined Péclet number Pe and Damköhler numbers
Dam , Symbolica introduces the time-dependent variables τPe(t) ≡ Pet and τDam (t) ≡ Damt ,
respectively, where m ∈ Z

+ such that m ≤ M and M is the number of Damköhler numbers
defined. Considering general time-dependent functions fε(t) as fε(t) = f (t, τPe(t), τDa(t)),
where τDa(t) is a tuple with components [τDa(t)]m = τDam (t), Symbolica assumes that the
total differential operator in time takes the form

∂ fε
∂t

≡ ∂ f

∂t
+ Pe

∂ f

∂τPe
+

M∑

m=1

Dam
∂ f

∂τDam
. (11)
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While Symbolica introduces the new time variables and expands the total differential operator
in time for completeness, we restrict our focus to the physics occurring on the diffusive time
scale and assume no dependencies on additional time variables.

In restricting the analysis to a single time variable t , dependent variables c(i)
ε (t, x) and

uε(t, x) are redefined as functions of ξ and expanded as power series in terms of ε, such that

c(i)
ε (t, x) ≡ c(i) (t, x, ξ) =

∞∑

j=0

ε j c(i)
j (t, x, ξ) , (12)

uε (t, x) ≡ u (t, x, ξ) =
∞∑

j=0

ε ju j (t, x, ξ) , (13)

where c(i)
j (t, x, ξ) and u j (t, x, ξ) are assumed to be periodic in ξ . With the expanded, dimen-

sionless system, the preparation phase concludes and Symbolica proceeds to the upscaling
phase, as described in Fig. 2.

3.3 The Upscaling Phase

Assignment of Dimensionless Number Values Prior to collecting terms with similar orders of
ε in each equation and boundary condition, the dimensionless numbers are assigned values.
While multiple combinations of dimensionless number values must be considered to find
applicability conditions for a homogenized system, it may also be of interest to analyze select
combinations of dimensionless number values. In either case, Symbolica can appropriately
accommodate the analysis.

In literature, a common strategy for finding applicability conditions is to upscale a system
using dimensionless numbers recast as variable powers of the small parameter, ε (Battiato and
Tartakovsky 2011; Boso and Battiato 2013). During the upscaling procedure, applicability
conditions are established by assessing the ability to separate scales and formulate valid
closure problems for a range of dimensionless number values. While this strategy saves
time by requiring only one iteration of the upscaling procedure, assessing the formulation of
valid closure problems for multiple cases of dimensionless number values can be complex
and prone to arriving at unnecessarily restrictive conditions. Instead of implementing this
strategy, we take advantage of the available computing power procured through automating
the upscaling procedure and let Symbolica attempt to upscale the system for each combination
of dimensionless number values within a defined range. This direct sampling approach gives
rise to the loop seen in the upscaling phase of Fig. 2. While potentially unfeasible for manual
implementation, this approach can be executed in a timely manner using Symbolica, as noted
in Table3, and can be easily parallelized.

Alternative to searching for applicability conditions, users may be interested in finding
upscaled systems for only a few combinations of dimensionless number values. In this case,
users can provide Symbolica with quantitative information about the system scales. This
allows Symbolica to compute and assign values to the dimensionless numbers after finding
them in the preparation phase.

Upscaling Routine After assigning a combination of values to the dimensionless numbers
and collecting terms with similar orders of ε in each equation and boundary condition, a
host of ordered equations and boundary conditions are created from the original system. The
upscaling routine, as described in Fig. 2, is then pursued by following a similar homoge-
nization procedure to that employed in the work of Boso and Battiato (2013). As previously
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discussed, the method for finding applicability conditions is altered from the cited work to
utilize the available computing power procured through automating the upscaling procedure.
Additionally, a straightforward extension to the cited procedure for handling more reaction
terms has been implemented in Symbolica. While details behind the algebraic manipulations
of Symbolica may be found in the cited work, the three main tasks completed during the
upscaling routine are detailed here.

In the first task, the homogeneity of the leading-order equations and boundary conditions is
evaluated. Upon finding homogeneous equations and boundary conditions, the leading-order
solutions are assumed to be independent of ξ and the next steps in the routine are pursued.
If the leading-order equations and boundary conditions are non-homogeneous, the upscaling
routine is exited.

In the second task, the validity of the closure problems derived from the equations and
boundary conditions of the following order, which we refer to as the “mid-order”, is assessed.
As described in Fig. 2, this task involves averaging the mid-order equations over B and
subtracting the result from the original mid-order equations to obtain a third set of equations.
In an attempt to rid any x-dependencies from the third set of equations and the mid-order
boundary conditions, the following first-order solution form is assumed:

c(i)
1 (t, x, ξ) = χ (i) (ξ) · ∇xc

(i)
0 (t, x) + c(i)

1 (t, x) , (14)

where χ (i)(ξ) is widely known as the closure variable for species i and c(i)
1 (t, x) = 〈c(i)

1 〉B
is the average of the first-order concentration solution for species i over B, which implies
〈χ (i)〉B = 0 in light of the leading-order solution being independent of ξ . Upon further
simplification of the difference between the mid-order equations and their averages over B,
the equations and boundary conditions to solve for χ (i)(ξ), known as the closure problems,
are found. If these problems allow for χ (i)(ξ) to be found as only a function of ξ , which
has been postulated, then the closure problems are deemed valid (i.e., consistent with the
postulation) and Symbolicamoves onto the final task. If the closure problems are not deemed
valid, the upscaling routine is exited. Here, we acknowledge that assuming the solution form
in equation (14) restricts the range of dimensionless number value combinations in which
Symbolica can find homogenized models. We look to relax this restriction in the future by
allowing Symbolica to adapt its assumed solution form based on the equation being analyzed.

Finally, in the third task, the error of the homogenized models is verified to be no greater
than order ε. To accomplish this, the equations on the order following the mid-order, referred
to as the “final-order” equations, are averaged over B and combined with the leading-order
and averaged mid-order equations. Considering the sum of these three sets of equations,
Symbolica attempts to construct homogenized equations by regrouping the averages of the
variable expansions shown in Eq. (12) and (13). If leftover expansion terms in the homog-
enized equations are of order ε or smaller after regrouping, then the error is deemed at
most first-order and Symbolica proceeds to save the homogenized equations before exiting
the upscaling routine. Otherwise, the upscaling routine is exited upon failure to obtain the
correct order of error.

Upon exiting the upscaling routine, Symbolica proceeds to analyze the next combina-
tion of dimensionless number values before ending the upscaling phase and providing the
saved homogenized equations, closure problems, and defined dimensionless numbers to the
user in symbolic form. In the following section we validate Symbolica’s outputs against
both published literature and numerical simulations for three ADR problems of increasing
complexity.
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Table 1 Definitions of the
variables from the problem
formulation considering a 2D
channel geometry

Variable Definition for a channel geometry

Scales

�̂ Channel width

L̂ Length scale along the channel

Full medium domain

Ωε
{
(x, y) : 0 < x < 1, − 1

2 < y < 1
2

}

∂Ωε
0

{
(x, y) : x = 0, − 1

2 < y < 1
2

}

∂Ωε
1

{
(x, y) : x = 1, − 1

2 < y < 1
2

}

Bε
{
(x, y) : 0 < x < 1, − 1

2 < y < 1
2

}

∂Bε
0

{
(x, y) : x = 0, − 1

2 < y < 1
2

}

∂Bε
1

{
(x, y) : x = 1, − 1

2 < y < 1
2

}

Γ ε
{
(x, y) : 0 < x < 1, y = ± 1

2

}

Unit-cell domain

Y
{
y : − 1

2 < y < 1
2

}

B
{
y : − 1

2 < y < 1
2

}

Γ
{
y : y = ± 1

2

}

|Y | 1

|B| 1

φ 1

“�̂− averaged” continuum domain

Ω {x : 0 < x < 1}
∂Ω0 {x : x = 0}
∂Ω1 {x : x = 1}
Spatial variables and operators

x xex
ξ yey

∇x
∂
∂x ex

∇ξ
∂
∂ y ey

Here, ex and ey are unit vectors in the x- and y-directions, respectively

4 Validation and Numerical Experiments

We now demonstrate the capabilities and benefits of using Symbolica to derive homogenized
models in three example problems. In the first two examples, we directly compare the outputs
of Symbolicawith the classically homogenized reactive systems analyzed inBattiato andTar-
takovsky (2011) and Boso and Battiato (2013), which involve non-linear heterogeneous and
mixing-induced homogeneous reactions, respectively. In the first problem, we demonstrate
the direct sampling approach implemented in Symbolica for finding applicability conditions
and highlight the advantages over manual investigation. We extend this analysis into the
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Fig. 4 A schematic of the three domains defined in Table1 for the problem formulation considering a 2D
channel geometry

second problem, where applicability conditions are again found for a more complex reac-
tive system. In the third problem, we demonstrate Symbolica’s handling of large, coupled
systems of equations by homogenizing a ten-species system with non-linear homogeneous
reactions in the liquid phase. For each example, we validate the derived models and proce-
dures implemented in Symbolica numerically for transport in a channel flow. Specifically,
we provide numerical evidence that each model achieves the predicted error by comparing
the spatially-averaged, pore-scale solution (2D) with the homogenized solution (1D) derived
by Symbolica. A description of the numerical domains is provided in the following section.

4.1 Domain andMesh Setup

While Symbolica completes the upscaling procedure independently of geometry, numerical
validation is conducted for the three example problems using a 2D channel geometry in a
Cartesian plane, where the x-direction is parallel to the length of the channel, for simplicity.
It is worth emphasizing that applying these models to such a geometry is identical to aver-
aging across the cross-section of the channel. This eliminates the dependency in the vertical
direction and results in a 1D upscaled model. We let �̂ be the channel width, which scales the
y-coordinate, and L̂ be a length scale of interest along the length of channel, which scales
the x-coordinate. From these length scales, the definitions of the domains and operators
described in the problem formulation (Sect. 2) then follow, as shown in Table1. Additional
variables related to domain boundaries have also been defined in Table1. Sketches of the
defined domains with the corresponding notation are provided in Fig. 4.

Inside the channel, we assume a fully-developed flow driven by a constant pressure gra-
dient and solve equations (2a), (2b), and (2c) to gain

v̂ (y) = Ûv (y) ex in Bε, (15)

where Û = −�̂2(∂ p̂/∂ x̂)/(8μ̂) is the velocity scale, ex is the unit vector in the x-direction,
and

v (y) = 1 − 4y2 in Bε . (16)
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Table 2 Simulation parameters and boundary conditions used to numerically solve the homogenized and
pore-scale models for the first example problem

Homogenized model Pore-scale model

Simulation parameters

Maximum Δx = 1 × 10−5 Maximum ΔxΔy = 5 × 10−5

Simulation boundary conditions
〈
c(1)

〉

B = 0.7 for x ∈ ∂Ω0, t > 0 c(1)ε = 0.7 for (x, y) ∈ ∂Bε
0, t > 0

∂
〈
c(1)

〉

B /∂x = 0 for x ∈ ∂Ω1, t > 0 ∂c(1)ε /∂x = 0 for (x, y) ∈ ∂Bε
1, t > 0

All numerical calculations are completed using a packaged finite element method solver in
the software Wolfram Mathematica (Version 12.1, 2020). The meshes of both 1D and 2D
domains are composed of uniform, second-order elements, with quadrilateral elements used
in the 2D domains. Details regarding the maximum element and time step sizes used in each
example problem are reported in the corresponding sections that follow.

4.2 Example Problem 1: One Species, Non-linear Heterogeneous Reaction

4.2.1 Reaction Description and Preparation

In the first example problem, we use Symbolica to homogenize the system presented in the
work of Battiato and Tartakovsky (2011). In this system, a single species in the liquid phase of
a pore-space undergoes a non-linear, heterogeneous reaction at the liquid-solid interface of an
arbitrary geometry. Using the dimensional equation and boundary condition from (Battiato
and Tartakovsky 2011), we write the input system describing the transport as

∂ ĉ(1)
ε

∂ t̂
+ ûε · ∇̂ ĉ(1)

ε − D̂(1)∇̂2ĉ(1)
ε = 0 in B̂ε, (17a)

−n · D̂(1)∇̂ ĉ(1)
ε = K̂(1)

S

(
ĉ(1)n1
ε − Ĉ (1)n1

)
on Γ̂ ε, (17b)

where we assume ûε is a known function that allows for scales to be separated and n1 = 2.
With the scales defined in equation (9), and Ĉ(1) = Ĉ (1), Symbolica finds the dimensionless
system

∂c(1)
ε

∂t
+ Pe1uε · ∇c(1)

ε − D(1)∇2c(1)
ε = 0 in Bε, (18a)

−n · D(1)∇c(1)
ε = Da1

(
c(1)2
ε − 1

)
on Γ ε, (18b)

prior to expanding the operators and dependent variables. Here, Symbolica has defined the
Péclet and Damköhler numbers, Pe1 and Da1, as

Pe1 = ÛL̂
D̂

, Da1 = K̂(1)
S L̂Ĉ (1)

D̂
. (19)

With the dimensionless equations, Symbolica proceeds to homogenize the system and find
applicability conditions by probing the dimensionless parameter space as per user specifica-
tions. We emphasize that the conditions derived here correspond to the following hypothesis:
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Fig. 5 Theα−β phase diagram for the first example problem providing the applicability region of the homoge-
nized models bounded by α = 2 and β = 0, where α and β are defined in Eq. (20). The additional applicability
condition and corresponding applicability region determined in the work of Battiato and Tartakovsky (2011)
is indicated by the gray-dashed line. At each point probed in the (α, β)-space, the homogenized and pore-scale

models are solved for multiple values of ε to calculate E(1)
r , defined in Eq. (23), and the order of convergence

of E(1)
max, where E(1)

max is defined in Eq. (21). The symbols indicate different combinations of magnitudes
between the advective, diffusive, and reactive terms of the homogenized equations, as shown in the legend

(1) the first-order solutions have the form defined in Eq. (14), (2) the fluid velocity is only a
function of the fast variables, and (3) only three orders of equations (the leading-order, mid-
order, and final-order) are used to derive the homogenized model, as discussed in Sect. 3.3.
During the direct sampling approach, Symbolica attempts to homogenize the system for
all combinations of dimensionless numbers Pe1 and Da1 with assigned values εω where
ω ∈ {−2,−1, 0, 1, 2, 3} as set by the user. This range of values corresponds to sampling 36
discrete points in the (Pe1,Da1) space.
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4.2.2 Symbolic Upscaling Results and Numerical Validation

In its entirety, the automated upscaling procedure executed in roughly 13.43 seconds,
where loading Symbolica and the inputs took 2.95 seconds, completing the preparation
phase took 0.56 seconds, completing the upscaling phase took 8.83 seconds, and creating
the output file took 1.09 seconds. In contrast to the work of Battiato and Tartakovsky (2011),
where the applicability conditions

1. Pe1 < ε−2,

2. Da1 < 1,
3. Da1/Pe1 < ε,

were found, our results show that condition 3 is unnecessary to achieve homogenized models
with the correct error of order ε, as Symbolica successfully derives homogenized models
for Da1/Pe1 > ε. This suggests that the last condition, found through manual derivation, is
overly restrictive.

For consistency with Battiato and Tartakovsky (2011), we define

α = − logε Pe1 and β = logε Da1, (20)

and provide numerical validation of the extended applicability region by comparing averaged
solutions from the pore-scale model, described in Eqs. (18a) and (18b), and the homoge-
nized models. We choose to solve for the steady-state concentration profile in a channel with
constant input to mitigate computational complexity and focus on validating the extended
applicability region. While the domains for the 2D pore-scale model and 1D homogenized
models are shown in Fig. 4 and detailed in Table1, the simulation parameters and boundary
conditions applied to the models are found in Table2. Additionally, the homogenized equa-
tions and closure problems corresponding to the 15 homogenized combinations of α and β

can be found in AppendixA.
To compare the homogenized and pore-scale models, we define the maximum absolute

error between the spatially averaged pore-scale solution 〈c(i)
ε 〉B and the homogenized solution

〈c(i)〉B as

E (i)
max = max

x∈Ω
(E (i)), (21)

where

E (i) = |〈c(i)
ε 〉B − 〈c(i)〉B|, (22)

is the absolute error. Here, the numerical solution of the pore-scale model c(i)
ε is averaged

over the channel width to obtain 〈c(i)
ε 〉B and we let i = 1 for the current example problem. In

computing the error, we consider multiple values of ε ∈ [0.01, 0.1] at each sampling point
in the (α, β)-space by changing the values of Pe1 and Da1 according to Eq. (20). This allows
us to record the greatest relative maximum error E(1)

r , defined as

E(1)
r = 100% × max

ε∈[0.01,0.1]

(
E (1)
max(ε)

ε

)

, (23)

at each sampling location.
To visualize and validate the applicability region found by Symbolica, whereα < 2 (Pe1 <

ε−2) and β > 0 (Da1 < 1), we provide the α − β phase diagram in Fig. 5. As shown, the 15
sampling locations where Symbolica successfully homogenized the system are highlighted
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Table 4 Exponents of ε that
define the combinations of
dimensionless number values in
the three considered scenarios

Scenario 1 Scenario 2 Scenario 3

α −2 1/2 1/2

β 1/4 1/4 1

γ −7/4 −1 −7/4

δ −7/4 −1 −7/4

α + β −7/4 3/4 3/2

α + γ −15/4 −1/2 −5/4

α + δ −15/4 −1/2 −5/4

Here, we let Pe1 = ε−α , Da1 = εγ , Da2 = εδ , and Da3 = εβ . The
summedexponents that violate an additional applicability condition from
the work of Boso and Battiato (2013) are indicated in boldface

with the corresponding results from the error analysis. The additional applicability condition
found in Battiato and Tartakovsky (2011), Da1/Pe1 < ε (α +β > 1), is visualized using the
dashed lineα+β = 1 for comparative purposes. Each square symbol in the diagram indicates
a different combination of magnitudes between the advection, diffusion, and reaction terms
of the homogenized equations. Consequently, the symbols also represent different pairs of
homogenized equations and closure problems found by Symbolica. For example, the dotted
square symbol indicating diffusive transport represents Eqs. (39a)–(39d) in Appendix A.
The two numbers below each symbol provide information regarding the error between the
solutions of the homogenizedmodel and the pore-scalemodel. Thefirst number isE(1)

r defined
in Eq. (23). Because all percentages stay below 100%, the magnitudes of the absolute errors
remain less than ε at all sampling locations for all values of ε considered, despite some (α, β)

pairs violating the additional applicability condition, α + β > 1 (Da1/Pe1 < ε). The second
number represents the order of convergence of E (1)

max with respect to ε, which is calculated
considering multiple values of ε for each sampling point. As shown, all convergence orders
are approximately 1 or greater, regardless of the condition α + β > 1 (Da1/Pe1 < ε).
Because consistency is found between the theoretically predicted and numerically calculated
errors, the less restrictive applicability conditions found by Symbolica are deemed viable for
rigorous upscaling.

The difference in reported applicability regions reveals a key advantage of finding appli-
cability conditions through the direct sampling approach implemented in Symbolica. As
previously stated, applicability conditions are often obtained by parameterizing the dimen-
sionless numbers using variable powers of ε in manual investigation. Though time-efficient
for manual implementation, this strategy is prone to finding unnecessarily restrictive condi-
tions. Additionally, its time-efficiency can be outweighed by the time necessary to formulate
complex applicability diagrams for large ADR systems. However, by automating the upscal-
ing procedure and allocating the work to computational resources, Symbolica avoids these
obstacles and brings time feasibility to the direct sampling approach. We believe this makes
the automated direct sampling approach a better alternative for finding applicability condi-
tions.
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Table 5 Simulation parameters, boundary conditions, and initial conditions used to numerically solve the
homogenized and pore-scale models for the second example problem

Homogenized model Pore-scale model

Simulation parameters

Maximum Δx = 1 × 10−5 Maximum ΔxΔy = 5 × 10−6

Maximum Δt = 1 × 10−3 Maximum Δt = 1 × 10−3

Simulation boundary conditions

∂
〈
c(i)

〉

B /∂x = 0 for x ∈ ∂Ω0 ∪ ∂Ω1,
t > 0

∂c(i)ε /∂x = 0 for (x, y) ∈ ∂Bε
0 ∪ ∂Bε

1,
t > 0

Simulation initial conditions
〈
c(1)

〉

B = H (0.5 − x) for x ∈ Ω, t = 0 c(1)ε = H (0.5 − x) for (x, y) ∈ Bε , t = 0
〈
c(2)

〉

B = H (x − 0.5) for x ∈ Ω, t = 0 c(2)ε = H (x − 0.5) for (x, y) ∈ Bε , t = 0
〈
c(3)

〉

B = 0 for x ∈ Ω, t = 0 c(3)ε = 0 for (x, y) ∈ Bε , t = 0

Here, we let i ∈ {1, 2, 3} and H(x) is the Heaviside function

4.3 Example Problem 2: Three Species, Non-linear Homogeneous Reaction

4.3.1 Reaction Description and Preparation

We now use Symbolica to homogenize the three-species ADR system investigated in the
work of Boso and Battiato (2013), which includes a non-linear, reversible homogeneous
biomolecular reaction and a linear heterogeneous reaction at the liquid-solid interface, i.e.,
A+ B � C � S. Using the dimensional equations and boundary conditions from Boso and
Battiato (2013), we write the input system describing the reactive transport as

∂ ĉ(1)
ε

∂ t̂
+ ûε · ∇̂ ĉ(1)

ε − D̂(1)∇̂2ĉ(1)
ε = −K̂(1,2)

NL ĉ(1)
ε ĉ(2)

ε + K̂(3)
L ĉ(3)

ε in B̂ε, (24a)

∂ ĉ(2)
ε

∂ t̂
+ ûε · ∇̂ ĉ(2)

ε − D̂(2)∇̂2ĉ(2)
ε = −K̂(1,2)

NL ĉ(1)
ε ĉ(2)

ε + K̂(3)
L ĉ(3)

ε in B̂ε, (24b)

∂ ĉ(3)
ε

∂ t̂
+ ûε · ∇̂ ĉ(3)

ε − D̂(3)∇̂2ĉ(3)
ε = K̂(1,2)

NL ĉ(1)
ε ĉ(2)

ε − K̂(3)
L ĉ(3)

ε in B̂ε, (24c)

−n · D̂(1)∇̂ ĉ(1)
ε = 0 on Γ̂ ε, (24d)

−n · D̂(2)∇̂ ĉ(2)
ε = 0 on Γ̂ ε, (24e)

−n · D̂(3)∇̂ ĉ(3)
ε = K̂(3)

S

(
ĉ(3)
ε − Ĉ (3)

)
on Γ̂ ε, (24f)

where variables with superscripts “(1)”, “(2)”, and “(3)” correspond to species A, B, and C ,
respectively, and we assume ûε is a known function that allows for scales to be separated.
With respect to the input forms provided in Eqs. (3a) and (3b), we let K̂(1,1,2)

NL = K̂(2,1,2)
NL =

K̂(3,1,2)
NL = K̂(1,2)

NL , K̂(1,3)
L = K̂(2,3)

L = K̂(3,3)
L = K̂(3)

L , n3 = 1, and p(i, j)
L and p(i, j,k)

NL are
chosen accordingly.

To scale the system, we allow Symbolica to assume the scales in Eq. (9) and reduce the
number of scales by letting Ĉ(i) = Ĉ∗, where i ∈ {1, 2, 3}. In doing so, Symbolica finds the
dimensionless system
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Fig. 6 The numerical results from scenario 1 of the second example problem at t = ε, where ε = 0.00625
and (α, β, γ, δ) = (−2, 1/4,−7/4,−7/4). (a) The B-averaged concentration profiles from the homogenized
model and the spatially averaged pore-scale solutions from Eqs. (25a)–(25f). (b) The absolute error E(i) in the
x-direction, defined in Eq. (22) where i = {1, 2, 3}. The red dotted line provides the upper limit on the error

predicted by the homogenized model. (c) The normalized pore-scale concentration profiles c̃(i)ε , defined in

Eq. (27) for i = {1, 2, 3}. Here, min
(x,y)∈Ωε

(c(i)ε ) was found as 0.2168, 0.2168, and 0.2675, and max
(x,y)∈Ωε

(c(i)ε )

was found as 1.2168, 1.2168, and 0.3549, for i = 1, 2, and 3, respectively

∂c(1)
ε

∂t
+ Pe1uε · ∇c(1)

ε − D(1)∇2c(1)
ε = −Da1c

(1)
ε c(2)

ε + Da2c
(3)
ε in Bε, (25a)

∂c(2)
ε

∂t
+ Pe1uε · ∇c(2)

ε − D(2)∇2c(2)
ε = −Da1c

(1)
ε c(2)

ε + Da2c
(3)
ε in Bε, (25b)

∂c(3)
ε

∂t
+ Pe1uε · ∇c(3)

ε − D(3)∇2c(3)
ε = Da1c

(1)
ε c(2)

ε − Da2c
(3)
ε in Bε, (25c)

−n · D(1)∇c(1)
ε = 0 on Γ ε, (25d)

−n · D(2)∇c(2)
ε = 0 on Γ ε, (25e)

−n · D(3)∇c(3)
ε = Da3

(
c(3)
ε − η1

)
on Γ ε, (25f)

prior to expanding the operators and dependent variables. Here, Symbolica has defined the
Péclet number Pe1, the Damköhler numbers Da1, Da2, and Da3, and the concentration ratio
η1 as
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Fig. 7 The numerical results from scenario 2 of the second example problem at t = ε, where ε = 0.00625 and
(α, β, γ, δ) = (1/2, 1/4, −1,−1). (a) The B-averaged concentration profiles from the homogenized model
and the spatially averaged pore-scale solutions from Eqs. (25a)–(25f). (b) The absolute error E(i) in the x-
direction, defined in Eq. (22) where i = {1, 2, 3}. The red dotted line provides the upper limit on the error

predicted by the homogenized model. (c) The normalized pore-scale concentration profiles c̃(i)ε , defined in

Eq. (27) for i = {1, 2, 3}. Here, min
(x,y)∈Ωε

(c(i)ε ) was found as 0.1320, 0.1319, and 0.3237, and max
(x,y)∈Ωε

(c(i)ε )

was found as 1.1319, 1.1318, and 0.3888, for i = 1, 2, and 3, respectively

Pe1 = ÛL̂
D̂

, Da1 = K̂(1,2)
NL L̂2Ĉ∗

D̂
, Da2 = K̂(3)

L L̂2

D̂
, Da3 = K̂(3)

S L̂
D̂

, η1 = Ĉ (3)

Ĉ∗ . (26)

Similar to the previous example problem, we now let Symbolica homogenize the system
in Eqs. (25a)–(25f) and find applicability conditions through direct sampling of the 5D
dimensionless parameter space.To conduct the direct sampling approach,Symbolica attempts
to homogenize the system for all combinations of dimensionless numbers Pe1, Da1, Da2, and
Da3 with assigned values εω, where ω ∈ {−2,−1, 0, 1, 2}, while assuming η1 = ε0. This
corresponds to sampling 625 points in the 5D parameter space.

4.3.2 Symbolic Upscaling Results and Numerical Validation

The execution time of the entire automated upscaling procedure was roughly 8 minutes and
15.23 seconds, where a detailed breakdown of the time is provided in Table3. In general,
the increased execution time with respect to the previous example is a result of the increase
in system size and combinations of dimensionless number values considered for finding
applicability conditions. It is worth noticing that most of the execution time is dedicated to
the upscaling phase, which can be easily parallelized due to the independence of the upscaling
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Fig. 8 The numerical results from scenario 3 of the second example problem at t = ε, where ε = 0.00625
and (α, β, γ, δ) = (1/2, 1, −7/4,−7/4). (a) The B-averaged concentration profiles from the homogenized
model and the spatially averaged pore-scale solutions from Eqs. (25a)–(25f). (b) The absolute error E(i) in the
x-direction, defined in Eq. (22) where i = {1, 2, 3}. The red dotted line provides the upper limit on the error

predicted by the homogenized model. (c) The normalized pore-scale concentration profiles c̃(i)ε , defined in

Eq. (27) for i ∈ {1, 2, 3}. Here, min
(x,y)∈Ωε

(c(i)ε ) was found as 0.0062, 0.0061, and 0.0063, and max
(x,y)∈Ωε

(c(i)ε )

was found as 1.0061, 1.0061, and 0.1378, for i = 1, 2, and 3, respectively

procedure at each sampling point. As a result, parallelization can significantly expedite the
search for applicability conditions.

Similar to the observation in the first example problem, less restrictive applicability con-
ditions are found by Symbolica than those found in the work of Boso and Battiato (2013)
for the same assumed first-order solution, the same assumption on the fluid velocity, and
the same ordered equation sets considered. The sufficient conditions identified by Boso and
Battiato (2013) are

1. Pe1 < ε−2,

2. Da1 < ε−2,

3. Da2 < ε−2,

4. Da3 < 1,
5. Da3/Pe1 < ε,

6. Da1/Pe1 < ε−1,

7. Da2/Pe1 < ε−1.

However, Symbolica successfully homogenized systems while violating conditions 5, 6,
and/or 7 by direct sampling, which suggests that such conditions are overly restrictive.
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For consistency with Boso and Battiato (2013), we define α, β, γ , and δ such that Pe1 =
ε−α , Da1 = εγ , Da2 = εδ , and Da3 = εβ . To provide numerical validation of the extended
applicability region, we compare averaged solutions from the pore-scale model, described in
Eqs. (25a) – (25f), and the homogenized models for the three combinations of (α, β, γ, δ)

reported in Table4. We note that these combinations violate applicability conditions 5, 6,
and/or 7, but satisfy conditions 1-4: scenario 1 violates conditions 5, 6, and 7; scenario 2
violates condition 5 (α + β > 1); scenario 3 violates conditions 6 (α + γ > −1) and 7
(α + δ > −1). Additionally, we note that scenarios 2 and 3 are taken directly from Boso
and Battiato (2013). In solving the models, we use the same problem setup as that presented
in Boso and Battiato (2013): species A and B are spatially separated in a channel at t = 0
with an initial absence of species C . While the general parameters, boundary conditions, and
initial conditions applied to the models are found in Table5, the homogenized equations and
closure problems corresponding to each scenario are found in Appendix B.

To visualize the simulation results from scenario 1, we provide Fig. 6. A comparison
between the homogenized solutions and spatially averaged pore-scale solutions is shown in
Fig. 6a, where the homogenized model qualitatively captures the transport behavior at the
continuum scale. Further quantitative evidence of this agreement is provided in Fig. 6b, where
the absolute error E (i), as defined in Eq. (22), remains less than ε throughout the domain
despite violating applicability conditions 5, 6, and 7. Finally, in Fig. 6c, the normalized pore-
scale concentration profiles for the three concentrations, defined as

c̃(i)
ε =

c(i)
ε − min

(x,y)∈Ωε
(c(i)

ε )

max
(x,y)∈Ωε

(c(i)
ε ) − min

(x,y)∈Ωε
(c(i)

ε )
, (27)

for i ∈ {1, 2, 3}, show that all species are well-mixed across the channel, which intuitively
supports the expectation that the system is homogenizable.

Despite violating condition 5 in scenario 2, the homogenized model qualitatively captures
the averaged pore-scale dynamics in Fig. 7a. Further support for this agreement is provided in
Fig. 7b, where E (i) again remains less than ε throughout the domain. Lastly, the normalized
concentration contours from the pore-scale model in Fig. 7c have shifted to the right, as com-
pared to those in Fig. 6c, due to a greater advective effect. However, diffusive transport still
controls the transverse mixing due to a small channel width. This causes the isoconcentration
curves to remain as vertical lines for all species, as opposed to parabolic in shape.

Finally, Fig. 8a shows that the homogenized model of scenario 3 qualitatively captures
the averaged transport behavior of the pore-scale solution, despite violating conditions 6 and
7. Compared to scenario 2, a weaker heterogeneous reaction has been applied; however, the
gradients of 〈c(3)〉B around x = 0.45 and x = 0.65 are slightly steeper than those shown in
Fig. 7a. This is due to the greater non-linear homogeneous reaction occurring in the liquid
phase of scenario 3. Further quantitative evidence of model agreement is provided in Fig. 8b,
where E (i) remains less than ε throughout the domain. Again, the normalized concentration
contours from the pore-scale model in Fig. 8c display vertical isoconcentration lines for all
species. Similar to those in Fig. 7c, the contours have been shifted to the right due to the
greater advective effect.

Overall, the three numerical experiments provide evidence that the applicability of the
homogenized models extends beyond conditions 5, 6, and 7 found in Boso and Battiato
(2013). This further underscores the value of automating the direct sampling approach for
finding applicability conditions.
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Table 6 Values assigned to the
dimensionless numbers in each of
the two considered scenarios

Scenario 1 Scenario 2

Pe1 ε2 ε−1

Dai ε−1 ε0

Dai+10 ε1 ε1

ηi ε0 ε0

Here, we let i ∈ M = {m ∈ Z
+ : m ≤ 10}

4.4 Example Problem 3: Ten Species, Non-linear Homogeneous Reactions

4.4.1 Reaction Description and Preparation

In the final example problem,we demonstrate Symbolica’s capability to handle large, coupled
systems of equations by homogenizing an arbitrary ten-species ADR system. We consider
both linear and non-linear homogeneous reactions in the liquid phase and assume linear
heterogeneous reactions at the liquid-solid interface for each species. In general, we write
the model reaction as

A + B � C, (28a)

C + D � S, (28b)

S → K + D, (28c)

K → T , (28d)

T + A → B, (28e)

W + K � M, (28f)

G + A → C, (28g)

where each letter indicates a unique species. The dimensional input system describing the
reactive transport is written using Eqs. (3a) and (3c), i.e.,

∂ ĉ(i)
ε

∂ t̂
+ ûε · ∇̂ ĉ(i)

ε − D̂(i)∇̂2ĉ(i)
ε = R̂(i)

ε in B̂ε, (29a)

−n · D̂(i)∇̂ ĉ(i)
ε = K̂(i)

S

(
ĉ(i)ni
ε − Ĉ (i)ni

)
on Γ̂ ε, (29b)

where i ∈ M = {m ∈ Z
+ : m ≤ 10}, ûε is a known function that allows for scales to be

separated, and ni = 1. Here, we note that variables with superscripts “(1)”, “(2)”, ... “(10)”
correspond to species A, B, C , D, G, K , M , S, T , and W , respectively. Additionally, we
define R̂(i)

ε as

R̂(1)
ε = −K̂(1,2)

NL ĉ(1)
ε ĉ(2)

ε + K̂(3)
L ĉ(3)

ε − K̂(1,5)
NL ĉ(1)

ε ĉ(5)
ε − K̂(1,9)

NL ĉ(1)
ε ĉ(9)

ε , (30a)

R̂(2)
ε = −K̂(1,2)

NL ĉ(1)
ε ĉ(2)

ε + K̂(3)
L ĉ(3)

ε + K̂(1,9)
NL ĉ(1)

ε ĉ(9)
ε , (30b)

R̂(3)
ε = K̂(1,2)

NL ĉ(1)
ε ĉ(2)

ε − K̂(3)
L ĉ(3)

ε − K̂(3,4)
NL ĉ(3)

ε ĉ(4)
ε + K̂(1,5)

NL ĉ(1)
ε ĉ(5)

ε + K̂(8)1
L ĉ(8)

ε , (30c)

R̂(4)
ε = −K̂(3,4)

NL ĉ(3)
ε ĉ(4)

ε + K̂(8)1
L ĉ(8)

ε + K̂(8)2
L ĉ(8)

ε , (30d)

R̂(5)
ε = −K̂(1,5)

NL ĉ(1)
ε ĉ(5)

ε , (30e)

R̂(6)
ε = −K̂(6)

L ĉ(6)
ε + K̂(7)

L ĉ(7)
ε + K̂(8)2

L ĉ(8)
ε − K̂(6,10)

NL ĉ(6)
ε ĉ(10)

ε , (30f)

R̂(7)
ε = −K̂(7)

L ĉ(7)
ε + K̂(6,10)

NL ĉ(6)
ε ĉ(10)

ε , (30g)
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R̂(8)
ε = K̂(3,4)

NL ĉ(3)
ε ĉ(4)

ε − K̂(8)1
L ĉ(8)

ε − K̂(8)2
L ĉ(8)

ε , (30h)

R̂(9)
ε = K̂(6)

L ĉ(6)
ε − K̂(1,9)

NL ĉ(1)
ε ĉ(9)

ε , (30i)

R̂(10)
ε = K̂(7)

L ĉ(7)
ε − K̂(6,10)

NL ĉ(6)
ε ĉ(10)

ε . (30j)

With respect to the input formprovided inEq. (3b),wehave let K̂(3,8)
L = K̂(8)1

L , K̂(6,8)
L = K̂(8)2

L ,

K̂(4,8)
L = K̂(8,8)

L = K̂(8)1
L + K̂(8)2

L = K̂(8)
L , K̂(i, j,k)

NL = K̂( j,k)
NL , K̂(i,q)

L = K̂(q)
L , and p(i, j)

L and

p(i, j,k)
NL have been chosen accordingly. Here, i ∈ M, j ∈ M, k ∈ {m ∈ Z

+ : j ≤ m ≤ 10}
for a given j , and q ∈ M \ {8}.

To scale the system, we allow Symbolica to assume the scales in Eq. (9) and reduce
the number of scales by letting Ĉ(i) = Ĉ(∗) for i ∈ M. In doing so, Symbolica finds the
dimensionless system

∂c(i)
ε

∂t
+ Pe1uε · ∇c(i)

ε − D(i)∇2c(i)
ε = R(i)

ε in Bε, (31a)

−n · D(i)∇c(i)
ε = Dai+10

(
c(i)
ε − ηi

)
on Γ ε, (31b)

where R(i)
ε is defined as

R(1)
ε = −Da1c

(1)
ε c(2)

ε + Da2c
(3)
ε − Da3c

(1)
ε c(5)

ε − Da4c
(1)
ε c(9)

ε , (32a)

R(2)
ε = −Da1c

(1)
ε c(2)

ε + Da2c
(3)
ε + Da4c

(1)
ε c(9)

ε , (32b)

R(3)
ε = Da1c

(1)
ε c(2)

ε − Da2c
(3)
ε − Da5c

(3)
ε c(4)

ε + Da3c
(1)
ε c(5)

ε + Da6c
(8)
ε , (32c)

R(4)
ε = −Da5c

(3)
ε c(4)

ε + Da6c
(8)
ε + Da7c

(8)
ε , (32d)

R(5)
ε = −Da3c

(1)
ε c(5)

ε , (32e)

R(6)
ε = −Da8c

(6)
ε + Da9c

(7)
ε + Da7c

(8)
ε − Da10c

(6)
ε c(10)

ε , (32f)

R(7)
ε = −Da9c

(7)
ε + Da10c

(6)
ε c(10)

ε , (32g)

R(8)
ε = Da5c

(3)
ε c(4)

ε − Da6c
(8)
ε − Da7c

(8)
ε , (32h)

R(9)
ε = Da8c

(6)
ε − Da4c

(1)
ε c(9)

ε , (32i)

R(10)
ε = Da9c

(7)
ε − Da10c

(6)
ε c(10)

ε , (32j)

prior to expanding the operators and dependent variables. Here, Symbolica has defined one
Péclet number, 20 Damköhler numbers, and 10 concentration ratios as

Pe1 = ÛL̂
D̂

, Da1 = K̂(1,2)
NL L̂2Ĉ(∗)

D̂
, Da2 = K̂(3)

L L̂2

D̂
, Da3 = K̂(1,5)

NL L̂2Ĉ(∗)

D̂
,

Da4 = K̂(1,9)
NL L̂2Ĉ(∗)

D̂
, Da5 = K̂(3,4)

NL L̂2Ĉ(∗)

D̂
, Da6 = K̂(8)(1)

L L̂2

D̂
, Da7 = K̂(8)(2)

L L̂2

D̂
,

Da8 = K̂(6)
L L̂2

D̂
, Da9 = K̂(7)

L L̂2

D̂
, Da10 = K̂(6,10)

NL L̂2Ĉ(∗)

D̂
, Dai+10 = K̂(i)

S L̂
D̂

, ηi = Ĉ (i)

Ĉ(∗)
,

(33)

for i ∈ M. Because of the high computational cost required to find the applicability conditions
from the 31-dimensional space of values, we instead allow Symbolica to homogenize the
system for the two scenarios of dimensionless number values listed in Table6. We note that
transport is controlled by reaction in scenario 1 and by advection in scenario 2.
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Fig. 9 The numerical results from scenario 1 of the third example problem at t = 0.002, where ε = 0.00625.
(a) The B-averaged concentration profiles from the homogenized model and the spatially averaged pore-scale
solutions from Eqs. (31a)–(32j). (b) The absolute error E(i) in the x-direction, defined in Eq. (22) where
i ∈ M = {m ∈ Z

+ : m ≤ 10}. The red dotted line provides the upper limit on the error predicted by the
homogenized model

Fig. 10 The numerical results from scenario 2 of the third example problem at t = 0.002, where ε = 0.00625.
(a) The B-averaged concentration profiles from the homogenized model and the spatially averaged pore-scale
solution from Eqs. (31a)–(32j). (b) The absolute error E(i) in the x-direction, defined in Eq. (22) where
i ∈ M = {m ∈ Z

+ : m ≤ 10}. The red dotted line provides the upper limit on the error predicted by the
homogenized model
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4.4.2 Symbolic Upscaling Results and Numerical Verification

The execution time of the entire automated upscaling procedure was roughly 1 minute and
4.82 seconds, where a detailed breakdown of the time is provided in Table3. We note that
completing the upscaling phase for both scenarios took roughly 56.05 seconds, which aver-
ages to about 28.03 seconds per scenario. We attribute the increase in average time per
iteration of the upscaling phase to the increased system size and reemphasize the potential
of parallelization in cutting down computational time.

We now verify the homogenization procedure implemented in Symbolica for complex
systems by comparing the averaged solutions from the pore-scale model, described in
Eqs. (31a)–(32j), and the homogenized models for scenarios 1 and 2 in Table6. We choose to
simulate a transient problem where the initial concentration profiles contain discontinuities
at various locations in the domain. The general simulation parameters, boundary conditions,
and initial conditions applied to the models are found in Table7. After solving both models,
the numerical solution of the pore-scale model is averaged over the channel width to obtain
〈c(i)

ε 〉B and the absolute error is calculated using Eq. (22), where i ∈ M.
To visualize the simulation results from scenario 1, we provide Fig. 9. A comparison

between the homogenized solutions and spatially averaged pore-scale solutions is shown in
Fig. 9a, where the homogenized model captures the complex gradients experienced by nearly
all species throughout the domain. Quantitative validation of the homogenized model may be
found in Fig. 9b, where all E (i) remain less than ε throughout the domain. Figure10 shows the
results from scenario 2 where advection dominates. As shown in Fig. 10a, the homogenized
model qualitatively captures the advective behavior of the averaged pore-scale solution.
Again, quantitative verification of the homogenized model may be found in Fig. 10b, where
all E (i) remain less than ε throughout the domain as predicted by the upscaling procedure.
These results further support the verification of Symbolica for homogenizing complex ADR
systems.

Infinding agreement between the homogenized and spatially averagedpore-scale solutions
for the ten-species system, we show that Symbolica’s homogenization procedure is robust.
While manual homogenization of a ten-species system is time-intensive at best, utilization
of Symbolica allocates the work to computational resources and allows for homogenized
models to be produced in as little as 30 seconds. This shows that automation and upscaling
can be successfully combined to study systems previously deemed unfeasible to model or
upscale manually.

5 Conclusion

Multiscale model development is often time-intensive and requires specialized expertise to
navigate cost-accuracy tradeoffs specific to individual applications. The complex systems
found in practice create an obstacle for the development and deployment of such models,
which leads practitioners to pursue more tractable alternatives optimized for deployment.
Yet, multiscale models host many benefits desired in the work of practitioners. In particular,
benefits including computational efficiency and affordability are provided through rigorous
upscaling with applicability conditions, a priori error estimates, and the potential for lack of
tuning parameters. To combat the challenges practitioners face associated with model devel-
opment via upscaling, we developed and validated a software, Symbolica, able to perform
automatic symbolic upscaling based on classical homogenization theory with minimal user

123



K. Pietrzyk et al.

input. We then tested Symbolica’s performance on three example problems of increasing
complexity and demonstrated Symbolica’s efficiency, accuracy, and robustness in handling
reactive systems of numerous reacting species and different dynamical conditions (i.e., differ-
ent combinations of dimensionless number values). Additionally, we showed that the direct
sampling approach implemented by Symbolica allows for the derivation of applicability
conditions that are less restrictive than those previously obtained through manual upscaling.

In validation of the automated upscaling procedure implemented by Symbolica for
Eqs. (3a)–(3c), we consider future modifications for advancing the software:

1. Automating and generalizing the assumed closure forms;
2. Expanding the derivation to higher order terms;
3. Implementing time-averaging procedures.

In addition to the proposed technical modifications, which can increase the interdisci-
plinary impact of the software, an important step towards democratizing the utilization of
upscaling is creating a version of Symbolica using an open-source symbolic framework.
This will ensure equitable access to all, and as a result, expand the accessibility of valuable
upscaling techniques to a wide, interdisciplinary community.
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are those of the authors and should not be interpreted as representing the official views or policies of the
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Appendix A

The homogenized equations and closure problems solved for the first example problem at
each indicated (α, β) coordinate in Fig. 5.
(α, β) : (1, 1)

∂
〈
c(1)

〉
B

∂t
+ 1

ε
〈u〉B · ∇x

〈
c(1)

〉

B
−∇x ·

[
D(1) · ∇x

〈
c(1)

〉

B

]
+ |Γ |

|B|
(〈

c(1)
〉2

B
− 1

)
=0 in Ω,

(34a)

D(1) =
〈
D(1)

(
I + ∇ξχ

(1)
)〉

B
−

〈
χ (1) ⊗ u0

〉

B
, (34b)

u0 ·
(
I + ∇ξχ

(1)
)

− 〈u0〉B − ∇ξ ·
[
D(1)

(
I + ∇ξχ

(1)
)]

= 0 in B, (34c)

−n ·
[
D(1)

(
I + ∇ξχ

(1)
)]

= 0 on Γ . (34d)

(α, β) : (0, 1)

∂
〈
c(1)

〉
B

∂t
+ 〈u〉B · ∇x

〈
c(1)

〉

B
− ∇x ·

[
D(1) · ∇x

〈
c(1)

〉

B

]
+ |Γ |

|B|
(〈

c(1)
〉2

B
− 1

)
= 0 in Ω,

(35a)

D(1) =
〈
D(1)

(
I + ∇ξχ

(1)
)〉

B
, (35b)

∇ξ ·
[
D(1)

(
I + ∇ξχ

(1)
)]

= 0 in B, (35c)

−n ·
[
D(1)

(
I + ∇ξχ

(1)
)]

= 0 on Γ . (35d)
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(α, β) : (−1, 1) , (−2, 1) , (−3, 1)
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D(1) · ∇x

〈
c(1)

〉

B

]
+ |Γ |

|B|
(〈

c(1)
〉2

B
− 1

)
= 0 in Ω, (36a)

D(1) =
〈
D(1)

(
I + ∇ξχ

(1)
)〉

B
, (36b)

∇ξ ·
[
D(1)

(
I + ∇ξχ

(1)
)]
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)]
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(α, β) : (1, 2) , (1, 3)
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ε
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(α, β) : (0, 2) , (0, 3)

∂
〈
c(1)

〉
B

∂t
+ 〈u〉B · ∇x

〈
c(1)

〉

B
− ∇x ·

[
D(1) · ∇x

〈
c(1)

〉

B

]
= 0 in Ω, (38a)

D(1) =
〈
D(1)

(
I + ∇ξχ

(1)
)〉

B
, (38b)

∇ξ ·
[
D(1)

(
I + ∇ξχ

(1)
)]

= 0 in B, (38c)

−n ·
[
D(1)

(
I + ∇ξχ

(1)
)]

= 0 on Γ . (38d)

(α, β) : (−1, 2) , (−2, 2) , (−3, 2) , (−1, 3) , (−2, 3) , (−3, 3)
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Appendix B

The homogenized equations and closure problems solved for the three scenarios of
(α, β, γ, δ) considered in the second example problem.
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(α, β, γ, δ) : (−2, 1/4,−7/4,−7/4)
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