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A B S T R A C T   

Shales will play an important role in the successful transition of energy from fossil-based resources to renewables 
in the coming decades. Aside from being a significant source of low-carbon intensity fuels, like natural gas, they 
also serve as geologic seals of subsurface formations that may be used to isolate nuclear waste, sequester CO2, or 
store intermittent energy (e.g., solar hydrogen). Despite their importance, shales pose significant engineering and 
environmental challenges due to their nanoporous structure and extreme heterogeneity that spans at least ~10 
orders of magnitude in spatial scale. Two challenges inhibit a system-level understanding: (1) the physics of fluid 
flow and phase behavior in shales are poorly understood due to the dominant molecular interactions between 
minerals and fluids under confinement, and (2) the apparent lack of scale separation that prevents a reliable 
(closed) description of the physics at any single scale of observation. In this review, we focus on the latter issue 
and discuss scale translation, which in its broadest sense is transforming data or simulations from one spatio-
temporal scale to another. While effective scale translation is not exclusive to shales, but all geologic porous 
media, the need for it is especially acute in shales given their high degree of heterogeneity. Classical theories like 
homogenization, while indispensable, fail when scales are not separated. Other methods, like numerical 
upscaling, scale-translate in only one direction: small to large, but not the reverse, called downscaling. However, 
the confluence of advances in three areas are bringing challenging problems such as shales within reach: 
increased computational power and scalable algorithms; high-resolution imaging and multi-modal data acqui-
sition; and machine learning to process massive amounts of data. While these advances equip geoscientists with a 
wide array of experimental and computational tools, no individual tool can probe the entire gamut of hetero-
geneity in shales. Their effective use, therefore, requires an ability to bridge between various data types obtained 
at different scales. The aim of this review is to present a coherent account of computational and experimental 
methods that may be used to achieve just that, i.e., to perform scale translation. We provide a broader definition 
of scale translation, one that transcends classical homogenization and upscaling methods, but is consistent with 
them and accommodates notions like downscaling and data translation. After a brief introduction to homoge-
nization, we review hybrid methods, numerical upscaling and its recent extensions, multiscale computing, high- 
resolution imaging, and machine learning. We place particular emphasis on multiscale computing and propose 
an algorithmic framework to bridge between the pore (micro) and Darcy (macro) scales. Throughout the paper, 
we draw comparisons between the various methods and highlight their (often hidden) similarities, differences, 
benefits, and pitfalls. We finally conclude with two case studies on shales that exemplify some of the methods 
presented.   
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1. Introduction 

The coming decades are poised to undergo a transition away from 
fossil-based energy resources towards renewables, driven primarily by 
ecological and political pressures induced by climate change. The suc-
cess of this transition, however, is contingent upon the sustainable 
production of low-carbon fuels from shales as well as the utilization of 
geological formations, sealed by shale, to sequester anthropogenic CO2 
and to potentially store renewable energy (e.g., hydrogen). During the 
past decade, shale formations have grown steadily in importance due to 
their significant contribution to the global energy supply and security. 
The low-carbon intensity fuels extracted from these formations, called 
shale gas and tight oil, have already displaced several carbon-intense 
fuels like coal for electricity generation. The impact has been espe-
cially dramatic in the U.S. Over the last decade, the U.S. has gone from 
scarce supplies of natural gas to abundance, and in 2018 became the 
world’s largest producer of oil since the 1970s (Yergin, 2020). The In-
ternational Energy Agency (IEA) has even projected that the U.S may 
become a net oil exporter within another decade (IEA, 2017). The result 
has been a marked reduction in the U.S carbon emissions and air 
pollution (Yergin, 2020). 

Despite shale’s promise, its engineering challenges are immense not 
only because the well-understood physics of conventional porous media 
are no longer applicable, but also because shales exhibit a much greater 
degree of heterogeneity than conventional reservoirs. The term “shale” 
refers loosely to ultrafine-grained rock types such as mudstones, marl-
stones, chalks, and others, which are nanoporous and exhibit chemical 
and structural heterogeneity at scales ranging from a few nanometers to 
several meters (Loucks et al., 2012) (Fig. 1); altogether accounting for 10 
orders of magnitude. The nanoporosity renders shales nearly imperme-
able, and it is only through the advent of horizontal drilling and hy-
draulic fracturing that production from shales has been made possible. 
Their working principle is to increase the accessible surface area be-
tween wellbore fluids and the rock, and thereby production. Despite the 
success of these technologies, only about 5% of the original oil in place 
and about 25% of the gas in place is recovered, with production rates 

decreasing markedly after a few months (Patzek et al., 2013). Moreover, 
questions about the impact of production on the environment (e.g., 
fugitive methane; Howarth et al., 2011) and groundwater supplies 
remain open. Addressing these challenges is key to sustainable field 
operations (Hemminger et al., 2015), and it requires a fundamental 
understanding of the physics and chemistry of shales, as well as their 
manifestation at multiple length and time scales. To appreciate the 
difficulty, consider that the productivity of a given well is directly tied to 
the rate at which individual gas molecules desorb from the walls of a 
nanoscale pore and then diffuse into the nearest microcrack whose 
aperture is sensitive to geomechanical stresses and the presence of liq-
uids. Other interactions between clays and water further confound the 
picture by introducing swelling (Wang et al., 2017) and mineral re-
actions (Harrison et al., 2017). 

Nanopores are comparable in size to fluid molecules, rendering 
classical continuum (or Darcy-scale) descriptions of fluid dynamics and 
phase behavior invalid; most of which also neglect key molecular forces 
between minerals and fluids (Jin and Firoozabadi, 2016). What is more, 
shales seem to lack a clear separation between scales. This makes 
describing (or closing) the physics at a single scale of observation nearly 
impossible (Section 2.1). The above challenges can be recast into two 
broad questions: (1) how do we describe the nanoscale physics and 
chemistry of shales? And (2) how do we translate such knowledge across 
spatiotemporal scales? This review explores the latter question, while 
the former will be addressed in separate publications (Khan et al., 2021; 
Jew et al., 2020). 

We distinguish the “scale” question from the “physics” question 
because the former is not exclusive to shales, but all geologic porous 
media. Scale translation, which we define as transforming data or in-
formation from one observation scale to another, has been a long- 
standing challenge in geosciences. Shale development has just stirred 
a more acute need for it. A massive body of literature already exists on 
scale translation, describing classical methods such as homogenization 
(Hornung, 1996; Whitaker, 2013; Gray and Miller, 2014) and numerical 
upscaling (Durlofsky and Chen, 2012; Farmer, 2002; Renard and de 
Marsily, 1997; Christie, 1996) that allow small-scale measurements or 
simulations to be transformed into large-scale decisions about the 
development of a petroleum reservoir or the fate of a contaminant 
plume. But these methods, while indispensable, have limitations. For 
one, they translate geologic information in a unidirectional fashion: 
from small to large, called upscaling. Another is that they require 
spatiotemporal scales associated with structural/chemical heterogene-
ities of the porous medium, as well as the physical/chemical processes 
occurring in them, to be separated, which may not hold for shales 
(Section 2.1). 

What is promising about today is that significant progress has been 
made in three areas since the turn of the century: (1) increase in 
computational power and the development of algorithms that are scal-
able on parallel machines, (2) high-resolution imaging instruments (e.g., 
hyperspectral, X-ray micro/nano-CT) that generate massive amounts of 
data, and (3) the development of machine learning methods able to 
recognize patterns among such data. However, these methods have 
largely evolved in isolation and while geoscientists now have a wider 
array of experimental and computational tools at their disposal, no 
single tool can probe the full gamut of heterogeneity present in shales. 
The gap must, therefore, be filled by an ability to translate one data type 
into another, and from one spatiotemporal scale to another. As we will 
describe later, such tasks require not only upscaling, but also down-
scaling, which converts large-scale data into small-scale information; 
something traditional methods do not address. We believe it is only 
through such a combination of multi-modal data acquisition and high- 
powered computation and pattern recognition that a full picture of 
shales, among other challenging geomaterials, can be constructed. 

The aim of this review is to place the foregoing new developments 
within the context of the more traditional approaches for scale trans-
lation and to highlight how they complement, rather than conflict with, 

Fig. 1. Schematic of relevant length scales in shale. From the upper right: 
water/clay interactions in a 10 nm wide slit pore where water is shaded in blue; 
nano-CT image of shale structure illustrating minerals, kerogen, and outgassed 
pores; microfractures filled with barite scale; matrix-to-fracture mass transfer; 
and zones of enhanced ductility. 
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each other. In Section 2, we generalize the definitions of well- 
established concepts such as scale translation, scale separation, tyrannies 
of prediction, upscaling, downscaling, and data translation. The goal here is 
to provide the necessary background for later sections and to broaden 
the classical definitions used in conventional porous media. In Section 
3.1, we provide a brief, but self-contained, review of analytical homog-
enization methods. They consist of mathematical techniques used to 
derive macroscopic governing equations from their microscopic coun-
terparts. While we discuss several such techniques, we highlight that all 
of them require “scale separation” as a central assumption. Under-
standing them, however, is crucial for making appropriate use of the 
computational methods presented next. In Section 3.2, we discuss hybrid 
methods, which aim to model porous-media problems when scale sepa-
ration is absent. In Section 3.3, we review numerical upscaling and its 
more recent extensions. A discussion of the upsides and pitfalls of nu-
merical upscaling, and the potential avenues for improvement, is pre-
sented. Section 3.4 discusses multiscale computing, to which a large 
portion of this review is devoted. First, we discuss older techniques that 
were developed purely at the Darcy scale, such as multiscale finite 
element (MsFE), mixed multiscale finite element (MxMsFE), multiscale 
finite volume (MsFV), and mortar multiscale finite element (MoMsFE). 
We then discuss straightforward extensions of these methods to the pore 
(or micro) scale, followed by a presentation of more recent and 
specialized methods for solving pore-scale problems. 

Next, we discuss traditional pore-scale modeling approaches, like 
pore network models (PNM), and formalize their algorithms by placing 
them within the context of numerical upscaling and multiscale 
computing. The main reason for our emphasis on multiscale methods in 
this paper is that not only do they bear many similarities with hybrid and 
numerical upscaling methods, as outlined throughout the paper, but 
they also possess additional properties that are computationally attrac-
tive such as the ability to downscale and quantify prediction errors. In 
Section 3.4.4, we propose a new algorithmic framework for bridging 
between pore- and Darcy-scale physics that combines several of the 
preceding methods. The anticipated limitations of the framework are 
also detailed. In Section 3.5, we discuss recent advances and trends in 
high-resolution and multi-modal imaging that are changing how 
geologic porous media are being characterized. Such images serve as 
crucial inputs to either the computational methods covered earlier or the 
machine learning algorithms discussed in the following Section 3.6. 

The exposition style of this paper is pedagogical, and while mathe-
matical details are certainly discussed, they are done so at a sufficiently 
high level so as not to distract from the main points. We use simple 
examples to convey the algorithmic details of each method presented. 
While the governing equations used in the examples describe conven-
tional porous media (not shales), the reader should note that the algo-
rithms themselves remain unaltered for shales. The only difference lies 
in the specific differential operators describing shale physics to which 
the algorithms would be applied. The validity of these operators, how-
ever, is a separate “physics” question actively being explored (Center for 
Mechanistic Control of Unconventional Formations (CMC-UF)). The 
paper concludes with Section 4, where we present two case studies that 
exemplify some of the methods presented. 

2. Definitions 

2.1. Scale translation 

We define scale translation as the process of using data at one 
spatiotemporal scale to infer needed information at another scale. An 
example is to use pore-scale data, such as X-ray μCT images, to derive 
Darcy-scale data, such as permeability (Wildenschild and Sheppard, 
2013; Blunt et al., 2013). Another is to use core-scale measurements of 
organic content to reconstruct millimeter-scale variabilities of thermal 
conductivity (Mehmani et al., 2016a). Scale translation is bidirectional. 
If fine-scale data are used to obtain coarse-scale information, the process 

is called upscaling (Section 2.4). By contrast, if coarse-scale data are used 
to obtain fine-scale information, the process is known as downscaling 
(Section 2.5). In geosciences, physicochemical processes such as flow, 
transport, geochemistry, mechanical deformation and fracturing occur 
at the scale of individual grains that comprise a rock. Such processes are 
typically fast and characterized by short time scales. Despite their 
microscopic origin, subsurface physics exhibit manifestations at all 
spatiotemporal scales relevant to a geologic formation. Microscale pro-
cesses occurring within individual pores conspire to produce emergent 
behaviors at the reservoir scale. Gravity fingering in CO2 storage is one 
example, where dissolution dynamics at the pore scale cause instabilities 
that grow into meter-scale convection columns (Lindeberg and Wessel- 
Berg, 1997). Another is mixing-induced mineral precipitation, in 
which a kilometer-scale plume is inhibited from further mixing due to 
pore-scale mineralization at the plume fringes (Zhang et al., 2010; 
Johnson et al., 2004). In engineering the subsurface, predictions and 
forecasts are frequently required at the scale of an entire reservoir (ki-
lometers) or a single well-bore (meters). The data collected about a 
reservoir, however, can range anywhere from pore-scale images, such as 
SEM and EDS, to inter-well seismic or tracer experiments. Scale trans-
lation is a crucial part of subsurface engineering precisely because of the 
disparity between the scale of data acquisition and the scale of demand 
for information. It is frequently thought that upscaling is the primary 
vehicle for converting lab-scale data into useful reservoir-scale de-
cisions. We show later that downscaling is just as, if not more, important. 
In Section 2.5, downscaling is discussed as a key step for practical scale 
translation. 

The advent of multiple technologies in the recent decade have 
created a perfect storm for an unprecedented characterization and 
forecast of subsurface physics. They include high-resolution micro/ 
macro-imaging (X-ray μ/n-CT, FIB-SEM, hyperspectral), computer 
hardware and powerful parallel machines, scalable multiscale algo-
rithms, and machine learning techniques to encode patterns among 
data. The definition of scale translation must therefore evolve accord-
ingly, beyond the engrained notion of upscaling, if these technologies 
are to provide any benefit other than the isolated probing of geologic 
samples at an instrument’s acquisition scale. While the mathematically 
formal notion of homogenization (Section 3.1) remains indispensable, it 
only provides a learning tool for understanding subsurface physics in 
idealized media (scale separable, periodic). Rocks, and in particular 
shales, are messy and do not adhere to such theoretical conveniences. 
Geologic data are acquired in many forms and at different scales, 
probing the formation with acoustic, neutron, X-ray, tracer, PET, elec-
tron beam, and other signals. In isolation, none provides a complete 
picture of the geology at all scales. The modern definition of scale 
translation must recognize this practical constraint and utilize tools that 
map and integrate data from multiple sources and scales. We call the 
mapping of data from one form to another data translation, which is a key 
component of effective scale translation. In Section 2.5, we show that 
data translation itself requires not only upscaling but also downscaling. 

2.2. Scale separation 

Geologic porous media have complex microstructure. Rocks consist 
of solid and void regions separated by a highly irregular boundary. The 
void provides a conduit for fluid flow while the solid skeleton bears the 
load of the overburden and undergoes mechanical deformation. Despite 
the microstructural irregularity, some porous media exhibit regularity 
when probed at sufficiently large spatial scales. Put differently, a 
microscopically heterogeneous porous medium may behave as a 
macroscopically homogeneous domain. A similar phenomenon may 
occur with time. A physicochemical process marked by rapid and noisy 
dynamics, such as immiscible drainage, can appear slow and smooth 
over longer time scales. When this happens, we say that the microscale 
and the macroscale physics are separable. A classic example is porosity 
(Bear, 2013). Imagine that we calculate the porosity of a sample 
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contained within a sphere of radius r centered around x. When r is small, 
the sphere samples either the void or the solid and the calculated 
porosity is either one or zero. As r is increased, more of the void or the 
solid are sampled and porosity fluctuates. At very large r, porosity may 
converge to a single value. If it does, scale separation holds for porosity. 
The smallest r at which porosity converges (up to a tolerance) defines a 
representative elementary volume (REV) (Bear, 2013). We denote the 
corresponding r as rREV. Had we chosen a parameter other than porosity, 
such as permeability, we would have made a similar observation. 
Permeability fluctuates at small r and then stabilizes at large r. However, 
the rREV for porosity is not necessarily the same as that for permeability. 
Nor is rREV for permeability the same as that for hydrodynamic disper-
sion coefficient or effective geochemical reaction rate. In other words, 
rREV depends on the physicochemical quantity of interest. Moreover, 
there is no guarantee that rREV is even bounded. An unbounded rREV 
(equal to infinity) means that scales are not separable. The REV concept 
is not limited to static properties that depend on the fine-scale geometry 
of a porous medium, such as porosity. It also extends to dynamic (or time 
dependent) variables, such as concentration, phase saturation, and 
pressure. For such variables, rREV is generally a function of the dimen-
sionless numbers that control the underlying physical process. In un-
stable displacement of one immiscible fluid by another, for example, the 
characteristic length associated with the size of each viscous finger can 
be orders of magnitude larger than the characteristic length associated 
with the microgeometry (Tomin and Lunati, 2016a). As the viscosity 
ratio between the two fluids, a dimensionless number controlling the 
process, is varied, the size of the fingers, and thus rREV, also changes. The 
above arguments for rREV extend quite naturally to time, where the 
shortest interval at which temporal fluctuations dissipate is denoted by 
tREV. If tREV is unbounded, then the process to which it corresponds is 
said to exhibit “memory” and is thus not scale-separable in time. In 
Section 3.1, we make the definition of scale separation mathematically 
more precise. 

The existence of a bounded rREV or tREV, and thus scale separation, is a 
key assumption in all homogenization methods discussed in Section 3.1. 
How well does it hold for geologic media? The answer depends on the 
local lithology and the burial history of a formation. But at least for 
organic-rich shales, there is evidence that the assumption may be 
violated. Fig. 2 shows semi-variograms of the vertical variability of 
organic content (weight fraction) for three wells in the Green River 
Formation, USA. If scale separation held, the variograms would 
converge to a single value beyond a minimum separation distance. 
Instead, the variograms in Fig. 2 never converge and increase 

indefinitely with distance. While local “sills” do seem to appear at some 
intervals, they are most likely due to “small-sampling” effects. Taken 
together, the three wells exhibit large fluctuations that suggest each 
variogram is not statistically “converged”. 

2.3. Tyrannies of prediction 

Two challenges have stymied practical scale translation:  

1. Tyranny of scales: This is the classical difficulty of describing 
multiscale systems, such as the subsurface, that are governed by 
processes occurring at a multitude of spatial and temporal scales. The 
disparity between the scale at which information is needed and the 
scale at which a phenomenon is studied or understood engenders the 
challenge for prediction. The difficulty was stated explicitly in the 
2006 NSF report (NSF, 2006) in the context of simulation. 

2. Tyranny of characterization: This is a well-known difficulty spe-
cific to geosciences. The tyranny of characterization is a manifesta-
tion of the unknowability, due to inaccessibility, of the subsurface. 
Data are sparse, which requires extrapolation beyond what is 
measured. When the microstructure is probed, by an X-ray micro-
scope for example, the field of view must shrink, and the larger 
picture is lost. Conversely, when field-scale data are collected, 
microscale information are blurred. The implication: mapping the 
microstructure at the field scale is not feasible, at least 
deterministically. 

While the two tyrannies feed off of each other in making geologic 
predictions difficult, it is important to keep their contributions separate. 
The following thought experiment illustrates how. The tyranny of scales 
says it is hard to come up with a mathematical description of a phe-
nomenon that is purely confined to one scale and needs not be informed 
of what is happening at other scales. This holds even if we had a perfect 
description of the subsurface down to its intricate microstructure. For 
example, to describe how large-scale fractures emerge at the field scale, 
something must be known about how tiny cracks nucleate and coalesce 
at the micron scale. The degree to which such information is needed 
from other scales depends on the physics under study. The best-case 
scenario is when a set of equations can be formulated at a scale of in-
terest that are predictive if the parameters in the equations can be 
adjusted to capture the physics at some other scale. A worse-case sce-
nario is when single-scale equations can be formulated only partially or 
not at all. Then, much more than just parameters (whole differential 
operators describing solute fluxes for example) must be informed by 
data from other scales. While the tyranny of scales applies to any one 
scale at which a description is sought, it is much more common in 
geosciences that microscale descriptions are better-understood and 
more readily available than macroscale descriptions. Because modeling 
microscale physics over an entire geologic formation is outside the realm 
of possibility (and interest) for now, single-scale descriptions are 
frequently sought to capture macroscale physics. 

The tyranny of characterization adds to this difficulty by saying that 
even if we had the computational power to solve microscale equations 
over an entire geologic formation, we still could not. Because the pa-
rameters and geometric descriptors needed to solve the equations would 
simply be unknown over much of the formation. Access points to a 
formation are limited to wells (and with lesser quality, to outcrops), 
which are the only sources of high-resolution data like cores, logs, thin 
sections, and microscopy images. The vast volumes between the wells 
can only be probed by lower-resolution instruments such as crosswell 
seismic and resistivity imaging (Neal and Krohn, 2012). A very similar 
problem exists also in the lab. When imaging a sample with an electron 
microscope, for example, one must trade off resolution for field of view. 
This introduces an intrinsic uncertainty to all large-scale predictions and 
necessitates some degree of extrapolation. What is different today, 
compared to past decades, is we have a lot more data and better 

Fig. 2. Semi-variograms of the total organic content (weight fraction) 
computed for three wells in the Green River formation, USA. The rock is an 
immature organic-rich shale. Semi-variograms are computed in the vertical 
direction. A clear separation of scales for the entire probed thickness (~200 m) 
seems speculative at best. [Plot was produced using well data courtesy of 
American Shale Oil LLC (AMSO).] 
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extrapolation tools. 

2.4. Upscaling 

Upscaling is the process of compressing fine-scale data in order to 
deduce coarse-scale information. A simple example is to replace a het-
erogeneous fine-scale permeability field with a single coarse-scale value, 
such that the two systems are equivalent in their total fluid throughput. 
The importance of upscaling in geosciences arises from the disparity 
between the scale at which geologic systems are understood (pore scale) 
versus the scale at which engineering decisions are made (field scale). 
The gap between the two is O(108–9) in conventional reservoirs and even 
larger in shales O(109–12). Upscaling attempts to bridge this gap by 
replacing a detailed representation of a reservoir or lab-scale sample 
with a much simpler description, characterized by fewer degrees of 
freedom. However, the replacement must preserve certain coarse-scale 
characteristics of the original system (e.g., energy dissipation). As a 
result, upscaling depends on the specific “microstructure”, or fine-scale 
heterogeneity, of the domain. For a horizontally layered medium, the 
upscaled permeability in the horizontal direction is the arithmetic mean 
of the layer permeabilities. For a vertically layered medium, coarse-scale 
permeability is the harmonic mean. Numerous studies have demon-
strated the intimate relation between microstructure and upscaled 
properties (Renard and de Marsily, 1997). 

In this work, we use the term “upscaling” in a much broader sense 
than the simple parameter estimation problem discussed above. We 
define upscaling as the process of obtaining any useful information at a 
scale larger than the one corresponding to the data used as input. The 
upscaled information may be: (i) a coarse-scale equation derived and 
parameterized through either homogenization (Section 3.1) or numeri-
cal upscaling (Section 3.2), (ii) an algorithmic construct, such as a flux 
matrix (Section 3.4.4), that represents a fine-scale equation as a lower- 
dimensional matrix-vector multiplication, or (iii) a machine learned 
representation between fine-scale data, such as X-ray μCT images, and 
coarse-scale parameters, such as permeability (Andrew, 2020) (Section 
3.6). The utility of such an expansive definition provides a unified 
framework for studying different methods and drawing useful, and 
potentially synergistic, comparisons between them. 

2.5. Downscaling and data translation 

Downscaling is the process of deducing fine-scale information from 
coarse-scale data. It is the inverse of upscaling, in which fine-scale data 
are combined to obtain coarse-scale information. Downscaling is more 
difficult than upscaling because the problem is underdetermined. Fine- 
scale variabilities reside in a higher dimensional mathematical space 
than do coarse-scale variabilities. A knowledge of coarse-scale hetero-
geneity alone is not sufficient to reconstruct the fine-scale heterogeneity. 
There are two ways with which downscaling can be constrained. The 
first is to make assumptions about the nature of the fine-scale variability, 
such as stationarity and Gaussian statistics. Such assumptions are com-
mon in geosciences, especially with permeability (Dagan, 1989). They 
render downscaling into a mathematically well-posed problem but can 
produce unrealistic reconstructions of the fine scale. The flaw with the 
approach is that it presupposes how the fine scale should look like 
without sufficient proof of it being true. The second way to constrain 
downscaling is to utilize fine-scale measurements of a property other 
than that being downscaled. An example is to use fine-scale measure-
ments of mineralogical composition of a rock to downscale the spatial 
variability of thermal conductivity (Mehmani et al., 2016a). For such a 
method to work, the fine-scale relationship between composition and 
conductivity must be known or measured beforehand. The approach is 
very general as no assumptions about the nature of the fine-scale vari-
ability (e.g., Gaussianity) are needed. The approach also extends the 
utility of downscaling to data translation, which we now demonstrate 
with a simple example. 

Consider the two-layered domain in Fig. 3b. Layers 1 (top) and 2 
(bottom) have thicknesses l1 and l2, respectively. Let E and K be two 
material properties, such as Young’s modulus and thermal conductivity, 
respectively. We use superscripts f and c to denote fine-scale and coarse- 
scale data. The fine-scale relationship Kf = f(Ef) is generally nonlinear 
and assumed here to be known from experiments, as shown in Fig. 3a. Ec 

and Kc correspond to coarse-scale (or averaged) properties in the di-
rection parallel to the layers. Suppose we are given Ec and are asked to 
compute Kc, i.e., data translation. Since f(.) is nonlinear, we cannot use it 
directly to map Ec to Kc, i.e., Kc ∕= f(Ec). For the layered domain in Fig. 3b, 
Ec and Kc correspond to the arithmetic averages of the layer properties: 

Ec =
l1Ef

1 + l2Ef
2

l1 + l2
Kc =

l1Kf
1 + l2Kf

2

l1 + l2
(1)  

Graphically, Ec and Kc lie on the secant that connects the layer properties 
(E1

f,K1
f) and (E2

f,K2
f) in Fig. 3a (dashed line). Observe that Kc ∕= f(Ec). To 

compute Kc accurately, three steps are required: (1) map the fine-scale 
value of Ef for each layer, (2) use Kf = f(Ef) in Fig. 3a to compute Kf 

for each layer, and (3) upscale Kf with Eq. (1) to obtain Kc. Step (1) 
amounts to downscaling E. The foregoing approach for translating Ec 

into Kc may be generalized to other petrophysical properties and to 
heterogeneities much more complicated than Fig. 3b. Mehmani et al. 
(2016a, 2016b) used it to translate total organic carbon content to the 
thermal conductivity of organic-rich shales. Step (1) is the most difficult 
of the three and may be accomplished in several ways. The most com-
mon, by far, is to use an imaging instrument such as an X-ray μCT 
(Wildenschild and Sheppard, 2013) scanner or a hyperspectral camera 
(Mehmani et al., 2017; Lyder et al., 2010; Speta et al., 2015). By com-
parison, step (3) is more straightforward as any number of computa-
tional upscaling methods, described in Sections 3.3–4, can be used to 
compute Kc (instead of Eq. (1)). 

The overarching idea in data translation is to deduce hard-to-map 
data, such as permeability, from easy-to-map data, such as porosity. 
For example, porosity can be easily mapped at the meter scale using fast 
and non-intrusive X-ray CT images, which correlate strongly with bulk 
density and thus porosity (Honarpour et al., 1985). Permeability, by 
contrast, requires more work, either in the form of flow experiments or 
computationally expensive pore-scale simulations. Neither is able to 
produce a continuous map of permeability, as each point in the meter- 
scale domain must be processed in sequence. But if a fine-scale rela-
tionship between porosity and permeability can be established for a 
specific geomaterial, then porosity maps can be translated into perme-
ability maps. The coarse-scale permeability follows after a straightfor-
ward upscaling step. Downscaling is a crucial step in data translation 
because without it, the relationship between Kc and Ec would be riddled 

Fig. 3. The importance of downscaling in data translation. (a) Functional 
relationship Kf = f(Ef) between two fine-scale properties, Kf and Ef. (b) A 
domain with a two-layer structure at the fine scale. Layers 1 and 2 have fine- 
scale properties (E1

f,K1
f) and (E2

f,K2
f), respectively. The coarse-scale (or aver-

aged) properties of the domain are (Ec,Kc). Suppose Ec is known and we want to 
deduce Kc. If we estimate Kc as f(Ec), using the fine-scale relationship, we incur 
errors because the function f(.) is nonlinear, i.e., Kc ∕= f(Ec). To compute Kc 

accurately, we must resolve the fine-scale variability of Ef in the domain. 
Namely, we must map Ef for each layer, use f(.) to compute Kf, and then upscale 
Kf to obtain Kc. The first step amounts to downscaling. 

Y. Mehmani et al.                                                                                                                                                                                                                               



Earth-Science Reviews 223 (2021) 103848

6

with “noise” induced by the unresolved fine-scale variability. The 
observation is ubiquitous in well-log analysis, where permeability is 
deduced from neutron or density logs of porosity (Ellis and Singer, 
2007). The large scatter in such permeability-porosity relations is 
because logging instruments have a resolution of a few feet, which is 
much larger than the typical fine-scale correlation length of sedimentary 
rocks. 

3. Methods 

3.1. Homogenization 

Homogenization is the process of deriving governing equations that 
apply at the coarse scale from those that apply at the fine scale. The 
designations “coarse scale” and “fine scale” are relative to each other but 
arbitrary in absolute terms. For example, they may correspond, 
respectively, to the range O(10 μm) and O(1 mm) or O(1 cm) and O(10 
m). Despite the arbitrariness, a common choice for the fine scale is the 
pore scale, which is the scale at which the porous medium appears as an 
aggregate of discrete objects and features (e.g., grains, cracks, vugs, fi-
bers). The corresponding coarse scale, where fluctuations associated 
with such features dissipate, depends on the porous medium and its 
microstructure. Homogenization is motivated by the fact that porous 
media (esp. geologic) are often too complex to be modeled at the fine 
scale and may require prohibitive amounts of computational resources 
to make predictions. Therefore, instead of resolving every little detail, 
which may also be redundant, a continuum representation of the physics 
is sought that effectively reduces the total number of degrees of freedom 
required to model the problem. Interestingly, but perhaps unsurpris-
ingly, continuum representations of porous media predate the devel-
opment of most homogenization methods. Continuum equations were 
originally postulated rather than derived from first principles, a classic 
example of which is Darcy’s law (Darcy, 1856) and its many subsequent 
derivations (Hornung, 1996; Neuman, 1977; Whitaker, 1986; Tartar, 
1980; Keller, 1980). The literature on homogenization is vast and the 
available tools and methods for it diverse. Our goal is not to provide a 
comprehensive review of each method, which would be an insur-
mountable effort for one paper, but to provide a simple pedagogical 
illustration of what homogenization means and how it differs from, and 
motivates, the computational methods in later sections. The reader is 
referred to the review articles (Battiato et al., 2019; Cushman et al., 
2002; Davit et al., 2013) and books cited herein for a more detailed 
exposition. We note that the terminology used in the literature to convey 
“homogenization” varies widely and includes “upscaling”, “coarse 
graining”, and “averaging”. We use “homogenization” to differentiate it 
from other concepts introduced in later sections. 

Several homogenization techniques exist for porous media problems, 
including the method of volume averaging (Whitaker, 2013; Quintard 
and Whitaker, 1988), multiple scales (or matched asymptotic) expan-
sion (Hornung, 1996; Keller, 1980; Mikelić et al., 2006; Auriault and 
Adler, 1995; Bensoussan et al., 2011), stochastic averaging (Dagan, 
1989; Rubin, 2003; Zhang, 2001), thermodynamically constrained 
averaging (Gray and Miller, 2014; Gray et al., 2013), and hybrid mixture 
theory (Bennethum and Cushman, 1996a; Bennethum and Cushman, 
1996b; Achanta et al., 1994; Hassanizadeh and Gray, 1990; Marle, 
1982) to name a few (see Cushman et al. (2002) for more). In all of them, 
the starting point is a set of fine-scale equations that are averaged in 
some sense to obtain coarse-scale governing equations. In the following, 
we focus on the method of volume averaging, as it is the most intuitive, 
and proceed by an example to illustrate its various steps. At the end, we 
provide a brief description of some of the other methods. 

Consider the porous domain Ω depicted in Fig. 4a. Suppose the fine- 
scale governing equation on Ω has the following general form 

Lf
(
u; ςf

)
= f (2)  

where Lf(⋅) is a linear fine-scale differential operator, u is the unknown 
field variable to be solved, and f is the right-hand side forcing term. The 
symbol ςf in L(u; ςf) denotes the set of known parameters in the fine-scale 
problem. As an example, Eq. (2) may correspond to the Stokes flow 
equation, which describes the mass and momentum conservation of a 
single-phase Newtonian fluid under isothermal conditions, low Rey-
nolds numbers, and steady state. For this case, Lf = [− ∇, μΔ; 0, ∇⋅] in 
matrix notation, u = [p, u]T, and ςf = μ, where Δ, ∇, and ∇⋅ are, 
respectively, the Laplace, gradient, and divergence operators. The 
parameter μ is the fluid viscosity, and p and u are the fluid pressure and 
velocity, respectively. In Fig. 4, the fine scale corresponds to the pore 
scale, which is comprised of a solid phase (black) and a void space 
(white). The Stokes equation is defined over the latter. The goal of the 
volume averaging method is to derive a coarse-scale equation of the 
following form 

Lc(〈u〉; ςc) = 〈f 〉 (3)  

where the subscript c in Lc and ςc means that these entities are defined at 
the coarse scale. In general, Lc and ςc differ from their fine-scale coun-
terparts Lf and ςf. The angular brackets around u and f denote their 
spatial averages over some predefined support volume Ωx. Namely, 

〈⋅〉|x =
∫

Ωx

⋅ω(y)dy (4)  

where Ωx is the averaging volume centered at point x, as shown by the 
ball in Fig. 4b. The averaging kernel ω(y) is defined on Ωx and integrates 
to a constant (i.e., has finite measure; usually unity or |Ωx|− 1). Typically, 
ω(y) is the indicator function. The averaged quantities <u> and <f>
are coarse-scale field variables, which are defined at each point x of the 
domain Ω (Fig. 4a). The whole idea behind volume averaging is to 
convolve ω(y) with the fine-scale Eq. (2) in order to obtain Eq. (3). This 
means that one must use Eq. (4) to operate <•> on Lf(u; ςf) = f, which 
yields 
〈
Lf
(
u; ςf

) 〉
= 〈f 〉 (5) 

The challenge now is to somehow approximate <Lf(u;ςf)> with 
Lc(<u>;ςc) through appropriate definitions of Lc and ςc. It is crucial to 
notice here is that Lc(<u>;ςc), or alternatively Eq. (3), is devoid of any 

Fig. 4. Schematic of homogenization in porous media. (a) A macroscopic (or 
large) porous medium, Ω, and (b) its microscopic (or pore-scale) details within 
a ball Ωx centered around the point x. In (b), black regions are the solid phase, 
Ωx

s, and white regions the void space, Ωx
v. The goal of homogenization is to 

derive continuum equations on Ω by “averaging” the details in Ωx for all x. In 
the method of volume averaging, the “averaging” is literal. An example is ho-
mogenizing the Stokes equation on Ωx

v to obtain the Darcy equation at x. 
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explicit dependence on u (only <u>). This means that to solve Eq. (3), 
we need not know anything about the fine-scale variability of u. Instead, 
we can solve an equation that is entirely in terms of <u>. But how do we 
get from <Lf(u;ςf)> to Lc(<u>;ςc)? The first step is to use a number of 
averaging theorems, which establish the rules for how integration and 
differentiation can be commuted. For a comprehensive list of such the-
orems we refer the reader to Gray et al. (1993), although a very small 
subset is frequently used in practice (Whitaker, 2013). The next step 
involves a series of simplifications that eliminate terms that depend 
explicitly on u. Common simplifications include the following assump-
tions: scale separation (Ωx is large with respect to pore-scale features in 
Fig. 4b, i.e., it is an REV), ergodicity (ensemble averages equal spatial 
averages), stationarity (statistics of the fine-scale variabilities are 
invariant with x), smooth gradients of u (no sharp boundary layers or 
transition zones exist, e.g., transport is diffusion- rather than advection- 
dominated). Most of these assumptions are common to other homoge-
nization methods mentioned earlier. The third step is to define the fine- 
scale deviation field variable as follows 

ũ = u-〈u〉 (6)  

and substituting it into the simplified form of Eq. (5) obtained from the 
previous step. The goal is to merely express any remaining terms that 
depend on u in terms of ũ. The final step is to formulate a differential 
equation whose solution is ̃u. Substituting this solution into the averaged 
equation from step 3 yields Eq. (3) and thus concludes the method. 

The crucial step in the above procedure is the formulation and so-
lution of the governing equation for ̃u. To formulate it, one merely needs 
to subtract the simplified averaged equation obtained from step 3 from 
the fine-scale Eq. (2). The result often looks like the following 

Lf
(
ũ; ςf

)
= Ls(〈u〉,∇〈u〉 ) (7)  

where Ls(⋅,⋅) is a linear operator in terms of coarse-scale arguments <u>
and ∇<u>. In general, Ls can depend on any other derivatives of <u>
specific to the problem at hand. We have chosen <u> and ∇<u> as 
examples. The left-hand side operator of Eq. (7) is identical to that of the 
fine-scale Eq. (2), which need not be, but is often, the case. Eq. (7) means 
that the fine-scale deviation ũ in the vicinity of x (i.e., inside Ωx) is 
controlled by a forcing (or source) term that depends linearly on <u>
and ∇<u>. Let us assume for the moment that <u> and ∇<u> are 
known and that we want to compute ̃u. Does Eq. (7) mean we must solve 
a different fine-scale equation on Ωx for every x? The answer is no, but 
only if Lf and Ls are both linear. Because then we can use the principle of 
superposition to solve only one fundamental solution of Eq. (7) and then 
scale it to obtain ũ on Ωx for every x. The fundamental solution is called 
the closure variable and the differential equation associated with it the 
closure problem. More precisely, the closure problem is 

Lb
(
b; ςf

)
=

[
Lf
(
b1; ςf

)

Lf
(
b2; ςf

)

]

=

[
Ls(1, 0)
Ls(0, 1)

]

= fb (8)  

where b = [b1, b2] denotes the closure variable and Lb(⋅) the closure 
operator. Given the solution of Eq. (8), the deviation field ũ can be 
reconstructed using the following equation 

ũ = 〈u〉 b1 +∇〈u〉⋅b2 (9)  

in the neighborhood of any point x (i.e., Ωx). It is easy to verify that Eq. 
(9) satisfies Eq. (7) 

Lf (ũ)=〈u〉Lf (b1)+∇〈u〉⋅Lf (b2)=〈u〉Ls(1,0)+∇〈u〉⋅Ls(0,1)=Ls(〈u〉,∇〈u〉)
(10)  

where the linearity of both Ls and Lf are used. Substituting Eq. (9) into 

the simplified coarse-scale equation obtained at the end of step 3 above 
yields the final coarse-scale Eq. (3), which is devoid of any dependencies 
on ũ. The coarse-scale operator Lc and the parameter ςc are determined 
after some rearrangements. We note that the parameter ςc is a function 
of the (averaged) closure variable b. The closure problem, Eq. (8), itself 
is defined at the fine scale and must be solved on a representative 
elementary volume (REV) of Ω. This REV coincides with Ωx for some 
arbitrary x. 

A few remarks are now in order. Eq. (8) is not the only way to 
formulate a closure problem, but it is quite general and illustrates the 
main point. In the above example, the closure problem consists of two 
sub-problems: one for b1 and another for b2. The boundary conditions of 
Eq. (8) (not shown) may also depend on <u> or its derivatives, in which 
case one must construct yet another “basis” or fundamental solution (e. 
g., b3) that accounts for such non-homogeneities. When u consists of 
more than one component and Ls(⋅,⋅) is a function of component-wise 
derivatives of u, Eq. (8) can yield a redundant number of closure sub- 
problems. An example is the Stokes equation, the closure problem of 
which is discussed by Whitaker (1986). To obtain a minimal set of sub- 
problems, it is probably best to treat each specific fine-scale Eq. (2) 
separately to exploit its useful peculiarities. Other boundary conditions 
of Eq. (8) are often chosen to be periodic. The justification is that since 
scale separation was assumed earlier, the coarse-scale variables must be 
independent of the specific boundary conditions imposed on the REV to 
solve the closure problem (see the discussion in Section 2.2). 

In the above, we have provided a high-level overview of the key 
components of the volume averaging method excluding many of its 
important, but sometimes distracting, details. The main takeaway is that 
a coarse-scale Eq. (3) is derived by spatially averaging the fine-scale Eq. 
(2). In so doing, assumptions are made that allow us to decouple the fine- 
scale deviation ũ from the coarse-scale trend <u>. The decoupling re-
quires the solution of only one fine-scale closure problem, whose solu-
tion b when scaled by <u> and its derivatives yields ũ. While the end 
goal was to obtain a purely coarse-scale (homogenized) equation (Eq. 
(3)), we can reconstruct an approximate fine-scale solution u to Eq. (2) 
in the neighborhood of any point x (i.e., within Ωx). This is done by 
simply substituting the computed <u> from Eq. (3) and ũ from Eq. (9) 
into u = <u> + ũ. Such a reconstruction is valid if the fine-scale ge-
ometry (Fig. 4b) of Ωx is invariant with respect to x. Otherwise different 
closure problems must be solved at different x. If the invariance is 
deterministic (i.e., the pore-scale structure in Fig. 4b is identical for all 
x), as is the case for periodic media, then the reconstruction may also be 
regarded as deterministic (i.e., u approximately satisfies Eq. (2)); albeit 
of a low fine-scale accuracy because several assumptions were made 
during the averaging process. If the invariance with respect to x is only 
statistical, as is the case for geologic media, then the reconstruction must 
also be regarded as statistical as u will not satisfy Eq. (2) pointwise. 

In Sections 3.3 and 3.4, we show that all multiscale computing and 
some numerical upscaling methods have a similar fine-scale recon-
struction step. This reconstruction, however, is always deterministic 
because the goal of such methods is to either solve, or “numerically 
homogenize”, Eq. (2) on a domain Ω in which the fine-scale geometry is 
fully known (tyranny of characterization is absent). The advantage of 
multiscale and (some) numerical upscaling methods, over homogeni-
zation, is that none of the assumptions made above, such as scale sep-
aration or stationarity, are required. The disadvantage is that fine-scale 
computations must be performed over the entirety of Ω; though in a fully 
decoupled and parallel fashion. Volume averaging, like all other ho-
mogenization methods, capitalizes on certain simplifying properties of a 
porous medium to restrict fine-scale calculations to a much smaller, but 
representative, subset of Ω. These calculations are precisely those 
associated with solving the closure problem on the REV (i.e., Ωx for some 
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x). The restriction of fine-scale calculations in homogenization methods 
dramatically reduces the total number of degrees of freedom of the 
problem: fine-scale unknowns over Ω versus coarse-scale unknowns over 
Ω plus fine-scale unknowns over Ωx. Such a reduction is not possible for 
porous media that do not exhibit scale separation, ergodicity, and sta-
tionarity (Wood, 2009). Shales seem to fall under this category (Fig. 2). 

There is one final assumption on which the validity of the coarse- 
scale Eq. (3) hinges: fine-scale variations in u must be relatively 
smooth and devoid of any sharp transitions or gradients. If this 
assumption is false, then additional terms with explicit dependence on u 
would appear in Eq. (3). In other words, it would not be possible to 
derive a local1 coarse-scale equation purely in terms of <u> (Cushman 
et al., 2002). In this case, the fine-scale variations of u are said to be 
coupled to the coarse-scale variations of <u>, or that the scales are not 
separated with respect to u. The degree of smoothness of u is controlled 
by, in addition to the microstructure of the pore space, the fine-scale 
parameters ςf in Eq. (2). It is possible to express ςf as a set of dimen-
sionless numbers that control various regimes of the fine-scale physics. 
In the context of reactive transport of a solute in a single-phase fluid, 
several studies (Battiato and Tartakovsky, 2011; Battiato et al., 2009; 
Boso and Battiato, 2013) have identified sufficient (but not necessary) 
conditions under which the fine- and coarse-scale equations are 
decoupled. The conditions are expressed as inequalities in terms of the 
dimensionless numbers of the problem. In cases where the fine- and 
coarse-scale equations are coupled, Eq. (2) is said to be non- 
homogenizable and Eq. (3) can no longer be solved in isolation. 
Instead, some numerical algorithm is necessary that performs compu-
tations at both the fine and the coarse scales. Methods capable of such a 
task include hybrid methods (Section 3.2), recent numerical upscaling 
approaches (Section 3.3), and multiscale methods (Section 3.4). Each is 
motivated by and suited for a specific kind of problem with different 
degrees of coupling across scales. Lastly, our discussion so far has 
assumed that Lf in Eq. (2) is linear. If nonlinear, several linearization 
steps and/or assumptions must be introduced to derive the coarse-scale 
Eq. (3), which are again valid only if the fine-scale gradient of u is small 
(Whitaker, 1996; Lugo-Méndez et al., 2015). The challenge in homog-
enizing nonlinear operators is not exclusive to the method of volume 
averaging. 

Let us now briefly discuss three other homogenization methods 
mentioned earlier. The hybrid mixture theory (HMT) and the thermo-
dynamically consistent averaging theory (TCAT) are both related to the 
method of volume averaging (MVA), but with a key difference. In MVA, 
the starting point is a fine-scale differential equation, which is then 
homogenized through mathematical manipulations and various order- 
of-magnitude assumptions. While some care is taken to avoid the 
emergence of unphysical terms (e.g., third-order derivatives; Battiato 
et al., 2019; Wood and Valdés-Parada, 2013), there is no guarantee that 
the homogenized equation will be consistent with the second law of 
thermodynamics. The latter states that entropy production, through 
dissipative processes in the system, must always be positive. For a pro-
cess described by the constitutive relation 

flux = constant× force (11)  

the rate of entropy production is proportional to flux × force. An 
example of Eq. (11) is Fourier’s law of heat conduction, where flux is the 

heat flow and force is the (negative) temperature gradient. Both HMT 
and TCAT ensure that constitutive relations of the form Eq. (11) derived 
at the coarse scale (e.g., Darcy’s law) are entropy producing. In MVA, 
such a constraint is not explicitly enforced. In porous media problems, a 
fine-scale equation such as Eq. (2) is often a combination of a conser-
vation equation (mass, momentum, energy) and a fine-scale constitutive 
equation of the form Eq. (11). In MVA, it is this combination that is 
averaged, whereas in TCAT and HMT, only the conservation equation 
(plus an entropy balance equation) is averaged. The averaging proced-
ure itself is identical to that described earlier for MVA. This leaves the 
coarse-scale constitutive equation to be determined separately in both 
HMT and TCAT, which if accomplished, “closes” the coarse-scale prob-
lem. In classical mixture theory (Cushman et al., 2002; Bedford and 
Drumheller, 1983) (MT), the precursor to both HMT and TCAT, one 
starts by postulating conservation equations at the coarse scale and then 
manipulates them to formulate coarse-scale constitutive equations of the 
form Eq. (11). The formulation assumes that thermodynamic equilib-
rium holds over each averaging volume Ωx, i.e., local coarse-scale 
equilibrium. In other words, u and all other thermodynamic variables 
are nearly constant within each Ωx but may vary for different x. HMT 
departs from MT in that the coarse-scale conservation equations are not 
postulated but derived by averaging their fine-scale counterparts (hence 
the prefix “hybrid”). Similar to MT, however, local coarse-scale equi-
librium is assumed to derive the coarse-scale constitutive relations. 
TCAT goes one step further and uses averaging to derive not only the 
coarse-scale conservation (and entropy balance) equations, but also the 
coarse-scale thermodynamic relations on Ωx from an assumption of local 
fine-scale equilibrium. The latter is subsequently used to derive the 
coarse-scale constitutive relations. Local fine-scale equilibrium implies 
that u does not need to be constant over Ωx and may exhibit fine-scale 
fluctuations. Despite improvements over MT, both HMT and TCAT are 
limited by the same assumptions as MVA: scale separation, stationarity, 
and ergodicity. 

The multiple scales expansion (MSE) method homogenizes Eq. (2) in 
a different way (Hornung, 1996). Instead of averaging it, the following 
ansatz is defined 

u(x, y) =
∑

n=0
εnun(x, y) (12)  

which expresses u as a power series in terms of a small “scale separation 
parameter” ε. The parameter ε is defined as the ratio of a fine-scale 
characteristic length (e.g., grain size in Fig. 4b) to a coarse-scale char-
acteristic length (e.g., diameter of Ω in Fig. 4a). Eq. (12) also assumes 
that u depends on both x (the position vector) and y = x/ε, because then 
u(x,y) exhibits fluctuations at two frequencies: slow, associated with x or 
the coarse scale, and fast, associated with y or the fine scale. The co-
efficients of the power series, un, must therefore also depend on x and y. 
Here, we assume Eq. (2) is time independent, otherwise the arguments 
of u and un would contain additional fast and slow time variables 
(Auriault and Adler, 1995; Battiato, 2016). By inspecting Eq. (12) we see 
that if we integrate both sides of it with respect to y over some REV (or 
unit cell) and take the limit ε ➔ 0, we obtain <u>(x) = <u0>(x). This 
defines the coarse-scale field variable at point x (up to order ε1), for 
which we wish to derive a coarse-scale equation (like Eq. (3)). 
Substituting Eq. (12) into Eq. (2), and collecting like-powers of ε and 
setting them to zero, yields a coupled sequence of differential equations 
in terms of the series coefficients un. The coupling, however, has a short 
recurrence, allowing low-order coefficients to be solved first and then 
used to solve higher-order coefficients. The lowest order term often re-
veals that u0 does not depend on y, confirming <u>(x) = u0(x) is indeed 
the sought-after coarse-scale variable. The next order term commonly 
leads to the formulation of a fine-scale closure problem (similar to MVA) 
that must be solved on some REV (or unit cell). The term after yields, 
after integrating it with respect to y, the governing equation for u0. The 
reader is referred to Hornung (1996) for a more detailed but accessible 

1 In local equations, <u(x,t)> is determined from a finite number of spatial 
and temporal derivatives of <u> at (x,t). In nonlocal equations (Wood and 
Valdés-Parada, 2013), one must know <u> and its derivatives at points other 
than, and distant from, (x,t). Here, we are interested in local coarse-scale 
equations. Nonlocal equations are computationally undesirable, as they 
involve integrals in space, time, or both, which lead to dense matrices and large 
memory requirements. Lagrangian, or particle-based, simulations provide an 
attractive (and perhaps only viable) alternative for such equations (Berkowitz 
et al., 2006). 
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account of MSE applied to various porous media problems. One 
advantage of MSE is the clarity it provides in identifying the approxi-
mations needed to arrive at a coarse-scale equation for u0 (Auriault and 
Adler, 1995). This is particularly useful in delineating applicability 
conditions for the coarse-scale equation in terms of the dimensionless 
numbers that control the physics (Battiato and Tartakovsky, 2011). 
However, MSE is limited by the same assumptions as all other homog-
enization methods: scale separation, stationarity, and ergodicity 
(formally, periodicity is required, but that is relaxed in practice). Lastly, 
MSE is very similar to perturbation expansion methods used in theo-
retical physics, where a hard problem (e.g., Schrödinger’s equation) is 
transformed into a sequence of easier problems by introducing a small 
parameter ε, whose limit is eventually taken to one (Bender and Orszag, 
1999). The small parameter in MSE, by contrast, connotes scale sepa-
ration and its limit is taken to zero. 

3.2. Hybrid computing 

Hybrid computing refers to numerical algorithms used to solve 
problems where the fine-scale and coarse-scale physics are coupled. Such 
problems do not lend themselves to purely coarse-scale descriptions like 
Eq. (3), because coarse-scale variables, <u>, depend on their fine-scale 
counterparts, u. In hybrid methods designed for porous-media problems, 
“fine scale” invariably refers to the pore scale and “coarse scale” to some 
larger scale called the continuum scale that we specify later. To solve 
nonhomogenizable problems, hybrid methods perform simultaneous 
fine-scale and coarse-scale simulations that are coupled in a bidirec-
tional fashion. In other words, pore-scale simulations provide input 
parameters to continuum-scale simulations and vice versa. The term 
“hybrid” means that not one (continuum-scale) but two (pore- and 
continuum-scale) models are needed to perform calculations. The 
freedom to choose a specific pore- or continuum-scale model, from a vast 
array of available tools, is one reason why hybrid methods are so diverse 
and application-specific. Another reason is that each hybrid method in 
the literature is designed to address a specific type of non-
homogenizability of the pore-scale equations. For example, pore-scale 
equations may be spatially nonhomogenizable but temporally homog-
enizable. This means that while the spatial fluctuations in u and <u>
remain coupled, their temporal dynamics are not. The implication for 
hybrid methods is that the temporal dynamics in u may be ignored and 
approximated by a quasistatic process, as they relax much more quickly 
than temporal dynamics in <u>. Another example is a problem where 
the pore-scale equations are spatially homogenizable throughout a 
domain except for a very small region (e.g., fracture). In such cases, one 
may use a pore-scale model for that region and a homogenized 
continuum-scale model for the rest of the domain. Many such combi-
nations of fully or partially nonhomogenizable problems may be con-
cocted, each of which demands a different hybrid method. We refer the 
reader to Scheibe et al. (2015a) for a thorough classification of such 
problems in the context of hydrogeology and their associated hybrid 
methods. Here, we focus on only two kinds of nonhomogenizable 
problems, that are among the more common, and discuss a few hybrid 
methods developed to solve them. A complete survey of the literature is 
not our intention, for which the reader is referred to recent reviews 
(Battiato, 2016; Scheibe et al., 2015a; Mehmani and Balhoff, 2015a; E 
et al., 2007; Oden et al., 2006; Yang, 2013). Instead, our aim is to 
illustrate the main ideas of hybrid computing and draw useful com-
parisons to the multiscale methods discussed in Section 3.4. We note that 
the nomenclature meant to convey “hybrid computing” varies across the 
literature and often includes the term “multiscale”. In this paper, we 
distinguish between “hybrid” and “multiscale” for clarity. 

Consider a porous domain Ω as depicted by Fig. 5a, over which Eq. 
(2) governs the fine-scale physics. The first kind of nonhomogenizable 
problem we consider is one where Eq. (2) is homogenizable everywhere 
on Ω except a very small region Ωp shown by the red rectangle. In other 
words, the coarse-scale Eq. (3) applies on Ωc = Ω\ Ωp but not on Ωp. 

Some physical examples include multiphase flow in a fracture (Ωp) 
coupled to seepage into the rock matrix (Ωc) (Hughes and Blunt, 2001); 
near-well (Ωp) acidification dynamics coupled to far-field flow in a 
reservoir (Ωc) (Golfier et al., 2002); mixing-induced reactions at a 
contaminant plume’s fringes (Ωp) coupled to a background flow (Ωc) 
(Acharya et al., 2007). Hybrid methods used to solve such problems are 
designated here with the prefix “local”. In a local hybrid method, a pore- 
scale model is used to solve Eq. (2) on Ωp and a continuum-scale model 
to solve Eq. (3) on Ωc. Hence, the continuum scale, in this context, is the 
scale at which Eq. (3) is valid on Ω\Ωp. The main factor that distin-
guishes one local hybrid method from another is the way Eq. (2) and Eq. 
(3) are coupled. Two categories can be identified: overlapping and non- 
overlapping methods. 

In an overlapping method (Battiato et al., 2011; Scheibe et al., 
2015b; Tartakovsky and Scheibe, 2011), the domain of Eq. (3) is 
extended from Ωc to Ω by adding extra, yet unclosed, source terms to Eq. 
(3) that are non-zero only over Ωp. Coupling is achieved by calculating 
these terms via pore-scale simulations, which in turn use continuum- 
scale simulations to determine their initial and/or boundary condi-
tions. From an implementation standpoint, overlapping methods are 
intrusive as they require existing codes to be modified to account for the 
extra source terms. Although, significant progress has led to the recent 
emergence of dedicated parallel codes that circumvent the issue through 
efficient data management (Scheibe et al., 2015c; Scheibe et al., 2014). 
In a non-overlapping method (Yousefzadeh and Battiato, 2017; Meh-
mani and Balhoff, 2014; Tang et al., 2015; Balhoff et al., 2008; Sun et al., 
2012a; Balhoff et al., 2007; Roubinet and Tartakovsky, 2013; Tarta-
kovsky et al., 2008), Eq. (3) is solved strictly on Ωc, which is disjoint 
from Ωp. Coupling between pore- and continuum-scale simulations oc-
curs through the interface Γ shared between Ωc and Ωp (i.e., Γ =

Ωc ∩ Ωp). The goal is to ensure continuity of fluxes (mass, momentum, 
energy) and thermodynamic state variables (concentration, pressure, 
temperature) across Γ, i.e., the red border in Fig. 5a. Among the many 
variants of non-overlapping methods in the literature, some adopt a 
Lagrangian framework to simulate the physics (e.g., smoothed particle 
hydrodynamics in Tartakovsky et al., 2008), which reduces the coupling 
to the interaction and/or transfer of particles across Γ. Others adopt an 
Eulerian framework where the coupling reduces to a set of algebraic 
constraints that must be solved alongside the differential Eqs. (2) and (3) 
(Yousefzadeh and Battiato, 2017; Mehmani and Balhoff, 2014; Balhoff 
et al., 2008; Sun et al., 2012a; Balhoff et al., 2007; Roubinet and Tar-
takovsky, 2013; Molins et al., 2019; Weishaupt et al., 2019; Baber et al., 
2016). A general way to solve such differential-algebraic systems is 
through the method of Lagrange multipliers (adopted from the optimi-
zation literature; Nocedal and Wright, 2006), or called, in this context, 
mortar domain decomposition (Bernardi et al., 1994; Belgacem, 1999). 

While the mathematical details of mortars are postponed until Sec-
tion 3.4.1.4, the main idea is to introduce additional unknowns on Γ that 
serve as multipliers to a set of predefined basis functions on Γ (Bernardi 
et al., 1994; Belgacem, 1999; Arbogast et al., 2000; Arbogast et al., 2007; 
Peszynska et al., 1999). The obvious disadvantage of mortars is they 
increase the total number of unknowns to be solved in the problem (i.e., 
the old on Ωc and Ωp, and the new on Γ). But this drawback pales against 
the computational gains made by fully decoupling the calculations on Ωc 
and Ωp. Even more important is that the specific pore- or continuum- 
scale models used on Ωc and Ωp, respectively, can be chosen arbi-
trarily (Mehmani and Balhoff, 2014; Tang et al., 2015; Balhoff et al., 
2008; Baber et al., 2016; Peszynska et al., 1999; Peszynska et al., 2000). 
This is because mortars act as a buffer between Ωc and Ωp, through 
which boundary information are passed. Regardless of the specific 
format used to store such information, fluxes and thermodynamic state 
variables on Γ, in the models for Ωc and Ωp, they are projected onto the 
mortar space to enforce continuity. A consequence of this projection is 
that the enforcement is in a weak (or variational) sense, rather than 
pointwise. The lack of dependence between the coupling scheme and the 
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specifics of the subdomain models is particularly welcome in hybrid 
computing (Mehmani and Balhoff, 2014; Tang et al., 2015; Balhoff et al., 
2008; Baber et al., 2016; Mehmani et al., 2012), where pore- and 
continuum-scale models are bound to differ.2 

Algorithmically, there are two ways local hybrid problems can be 
solved with the mortar method: monolithically or sequentially (Meh-
mani and Balhoff, 2014; Ganis et al., 2014a; Ganis et al., 2014b). The 
monolithic scheme requires that the residual equations associated with 
Eq. (3) on Ωc, Eq. (2) on Ωp, and the continuity constraints on Γ to be 
assembled into a single global system, which is then solved in a parallel 
fashion (often by constructing Schur complements). The sequential 
scheme consists of formulating a much smaller (interface) system in 
terms of only the continuity constraints on Γ. To solve it, iterations (with 
a Newton-Krylov solver) are performed that, in turn, require isolated 
solutions of sub-problems on Ωc and Ωp (hence the name “sequential”). 
The main advantage of sequential schemes is that both the pore- and 
continuum-scale models on Ωc and Ωp can be treated as black-boxes. No 
knowledge of their internal workings is required, only their boundary 
information are needed. The monolithic scheme poses challenges to 
coupling Lagrangian (particle-based) with Eulerian (grid-based) models, 
because residual equations of the former are either ill-defined or difficult 
to integrate into the same system as the latter (Scheibe et al., 2015a). 
The sequential scheme, by contrast, is devoid of such limitations. On the 
other hand, the convergence rate of monolithic schemes tends to be 
much faster (Mehmani and Balhoff, 2014; Ganis et al., 2014a) than 
sequential schemes; because they account for off-diagonal blocks in their 
Jacobians. Other non-overlapping methods in the literature (Yousefza-
deh and Battiato, 2017) formulate the coupling between Ωc and Ωp as a 
“root-finding problem” for the fluxes on Γ. It is instructive to also 
construe such methods as a sequential scheme where the mortar space 
consists of piecewise constant basis functions in the flux (instead of the 
thermodynamic state) variable. 

The second kind of nonhomogenizable problem we consider is one 
where the fine-scale Eq. (2) cannot be homogenized over all, or a large 
part, of Ω. In other words, the coarse-scale Eq. (3) is invalid over most of 
Ω. Hybrid methods designed to solve such problems are prefixed here by 
the term “global”. A notable example is the heterogeneous multiscale 
method (HMM) (E et al., 2007; Chu et al., 2012; Chu et al., 2013; E and 
Engquist, 2003; Alyaev et al., 2018), which we discuss next.3 Consider 

the domain Ω in Fig. 5b. HMM divides Ω into a number of coarse grids Ωi 
delineated by the solid black lines. Even though a coarse-scale equation 
for <u> is unavailable, we may still write a coarse-scale balance 
equation for <u> on each coarse grid Ωi as follows: 

∂〈u〉
∂t

=

∫

∂Ωi

flux (13)  

where flux denotes the in/outflow of u through the boundary of Ωi, or 
∂Ωi. Eq. (13) may represent a balance of mass, momentum, or energy. 
Here, we ignore various possible source terms for simplicity. The fact 
that Eq. (2) is nonhomogenizabe means that a closed-form expression for 
flux (i.e., purely in terms of <u>) is unavailable. To compute flux, HMM 
places a pore-scale model Ωij

p (red boxes in Fig. 5b) between every pair 
of adjacent coarse grids Ωi and Ωj. Note that the union of all Ωij

p does not 
cover Ω, but instead comprises a tiny fraction of Ω (|Ωi| ≫ |Ωij

p|). The 
pore-scale model Ωij

p is used to compute the flux between Ωi and Ωj, 
which we call Qij. The boundary conditions for Ωp

ij are provided by the 
coarse-scale variables <u>i and <u>j defined as spatial averages of u 
over Ωi and Ωj, respectively. The coarse-scale Eq. (13) and the pore-scale 
models are solved in tandem to predict the evolution of <u> in space 
and time. 

An interesting analogy between HMM and the homogenization 
method TCAT, described in Section 3.1, can be made. In TCAT, the 
coarse-scale constitutive relation for flux, namely Qij = f(<u>i,<u>j), is 
derived formally by homogenizing the fine-scale equations. In HMM, 
this relation is computed numerically. What motivates HMM is that the 
flux relation cannot be derived by TCAT, or any other homogenization 
method, for a nonhomogenizable problem. The implicit assumption in 
HMM, of course, is that pore-scale simulations on Ωij

p are representative 
of the whole interface between Ωi and Ωj. In effect, pore-scale results on 
a few sample points are extrapolated over Ω. While limiting, the 
assumption is far less restrictive than that of homogenization methods, 
which extrapolate pore-scale simulations on one pore-scale domain (the 
closure problem) to the entirety of Ω. The reader is referred to E et al. 
(2007) for a lucid presentation of HMM. 

We conclude by drawing an analogy between multiscale methods, 
discussed in Section 3.4, and hybrid methods. The goal of multiscale 
methods is to solve Eq. (2) either exactly or approximately. The pro-
cedure consists of a numerical homogenization step (upscaling) and a 
fine-scale reconstruction (downscaling) step. The former requires 
computing a set of numerical basis functions on a collection of sub-
domains of Ω, the fine-scale details of which can be discarded if deemed 
redundant (same as homogenization; see Section 3.1). Those parts of Ω 

Fig. 5. Schematic of two kinds of hybrid methods. (a) In local hybrid, the fine-scale Eq. (2) is homogenizable over the entire domain Ω except for a small region Ωp 
(red box). The coarse-scale Eq. (3) is valid over Ωc = Ω\Ωp. Pore-scale simulations are performed on Ωp and continuum simulations on Ωc. The two are coupled either 
in a non-overlapping fashion, by exchanging information at the interface (red border), or in an overlapping fashion, by introducing source terms into Eq. (3) that are 
non-zero only on Ωp. (b) In global hybrid, either the fine-scale Eq. (2) is nonhomogenizable or the coarse-scale Eq. (3) is unknown over all of Ω. The schematic 
corresponds to HMM (E et al., 2007). Coarse-scale balance equations are written for each coarse grid (e.g., Ωi) and combined with coarse-scale constitutive relations 
determined from fine-scale simulations (between Ωi and Ωj). The latter yields the flux Qij at the interface between Ωi and Ωj as a function of the coarse-scale state 
variables <u>i and <u>j. 

2 Claims that suggest such a dependence (Battiato, 2016; Yousefzadeh and 
Battiato, 2017) for mortar methods are unwarranted.  

3 HMM may also be adapted into a local hybrid method to solve problems like 
Fig. 5a (“Type A” in E and Engquist, 2003)). 
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where fine-scale details cannot be discarded are nonhomogenizable, 
which may span either the whole domain (Fig. 5b) or part of it (Fig. 5a). 
Multiscale methods can localize the downscaling step to these non-
homogenizable regions (adaptively) and reconstruct u, while interpo-
lating the coarse-scale variable <u> over the rest of the domain. Both 
steps are performed using the basis functions. 

So what then is the difference between multiscale and hybrid 
methods? In theory, nothing. Both aim to solve or approximate the so-
lution of Eq. (2) and resolve fine-scale details wherever needed. The only 
technical difference is that hybrid methods solve an analytically ho-
mogenized Eq. (3) in regions where it is applicable, whereas multiscale 
methods use numerically homogenized basis functions to interpolate the 
solution in such regions. In practice, however, there is a big difference 
between the two: multiscale methods rely on the tyranny of character-
ization being absent and assume that a fine-scale (geometric) description 
of Ω is available. Neither homogenization nor hybrid methods make this 
assumption. In geologic media, pore-scale characterizations are avail-
able only on very small samples (e.g., core plugs). Modeling performed 
at the field scale, by either solving homogenized equations or perform-
ing hybrid computations, tacitly assumes that the available pore-scale 
descriptions can be extrapolated to the whole reservoir. Thus a hand-
ful of closure problems, in homogenization, or pore-scale models, in 
hybrid methods, becomes the basis for such extrapolation. But is 
extrapolation an exclusive feature of hybrid methods? No. In multiscale 
methods, extrapolation translates to ascribing the same basis functions 
constructed on a few coarse grids (or samples) to all the coarse grids in Ω. 
The basis functions themselves may even be built on a very small portion 
of each coarse grid (similar to HMM), if scales are separated, and then 
extrapolated over the whole grid. Hence, the distinction between mul-
tiscale and hybrid methods, with the former often identified as a 
“multiresolution” (Scheibe et al., 2015a) or “traditional multiscale” (E 
et al., 2007) approach, is, especially in light of recent developments (see 
Section 3.4.2), no longer sharp. While ignored above, similar arguments 
hold for problems exhibiting temporal nonhomogenizablity. 

3.3. Numerical upscaling 

Numerical upscaling was born out of a practical necessity to reduce 
the complexity of geostatistical models. Such models provide a proba-
bilistic snapshot of the fine-scale variability in the subsurface condi-
tioned to measurements such as cores, well-logs, and seismic. In this 
context, “fine scale” refers to some continuum scale, not the pore scale. 
Geomodels often consist of O(107–108) grid cells (Durlofsky and Chen, 
2012; Farmer, 2002), which until a decade ago were ~1–2 orders of 
magnitude larger than what most advanced reservoir simulators could 
handle. While current hardware capabilities have certainly improved to 
the point that these numbers are no longer considered “large”, upscaling 
remains important. The reason lies in the inadequacy of a single simu-
lation in producing useful predictions about the subsurface. Multiple 
simulations are needed because petrophysical descriptions of the sub-
surface are uncertain. Upscaled models are much faster at running 
through the thousands of geostatistical realizations at hand than the 
original fine-scale geomodel. Another recurrent motivator for numerical 
upscaling is that a few, albeit expensive, simulations performed upfront 
will save substantial computational cost later. The upfront simulations 
may be single-phase flow and the subsequent simulations time- 
dependent two-phase flow. Upscaling accelerates two-phase flow sim-
ulations because solving a fine-scale two-phase flow problem is 
computationally equivalent to solving a fine-scale single-phase flow 
problem for every time step. Similarly, the computational cost of 
numerically upscaling a few realizations in a geostatistical ensemble can 
be amortized over thousands of subsequent realizations. Early upscaling 
involved the use of analytical methods such as power-averaging (Renard 
and de Marsily, 1997; Deutsch, 1989). Our review focuses only on nu-
merical methods as they are widely accepted to be the only viable option 
for practically complex problems. 

The goal of numerical upscaling is to parametrize a coarse-scale 
equation whose solution approximates, in an averaged sense, that of a 
given fine-scale equation. The entire workflow consists of two steps: (1) 
assume a mathematical form for the coarse-scale equations, and (2) 
compute the parameters that appear in them. Each step is the basis for a 
different classification of upscaling methods. The first is based on which 
physical parameters, appearing in the coarse-scale equations, are to be 
upscaled. The second is based on how such parameters are actually 
computed. In homogenization (Section 3.1), hybrid methods (Section 
3.2), and multiscale methods (Section 3.4), the first step is absent 
because no a priori assumptions about the form of the coarse-scale 
equations are made. Similar to multiscale methods, however, numeri-
cal upscaling can be viewed as a kind of “numerical homogenization”. 

The first classification divides methods into single-phase parameter 
and two-phase parameter upscaling; we drop the word “parameter” for 
brevity. In single-phase upscaling, the fine-scale equation, in its simplest 
form, is 

∇⋅(k∇p) = 0 (14)  

and the postulated coarse-scale equation is 

∇⋅(k*∇pc) = 0 (15)  

which has the same mathematical form as Eq. (14). In Eq. (14), k and p 
are the fine-scale permeability and pressure, respectively. In Eq. (15), k* 

is the upscaled (or equivalent) permeability and pc is the coarse-scale 
pressure. The goal of single-phase upscaling is to compute k*. If the 
fine-scale Eq. (14) were time-dependent, then a fine-scale porosity φ and 
an equivalent porosity φ* would appear in Eqs. (14) and (15), respec-
tively. The latter would have to be upscaled alongside k*. But upscaling 
φ* from φ is trivial because porosity is an additive parameter, i.e., φ* is a 
weighted average of φ. In two-phase upscaling, the fine-scale equations, 
in their simplest form, are 

∇⋅(λ(S) k∇p ) = 0 φ
∂S
∂t

+∇⋅(uf (S) ) = 0 (16)  

and the postulated coarse-scale equations are 

∇⋅(λ*(Sc) k*∇pc ) = 0 φ*∂Sc

∂t
+∇⋅(uc f *(Sc) ) = 0 (17)  

where we have neglected fluid compressibility, gravity, and capillarity 
(Rabinovich et al., 2015). In Eq. (16), S is the fine-scale saturation; λ(S) 
and f(S) are the fine-scale total mobility and fractional flow function, 
respectively; and u is the fine-scale total velocity. In Eq. (17), Sc is the 
coarse-scale saturation; λ*(Sc), and f*(Sc) are the coarse-scale mobility 
and fractional flow function, respectively; and uc is the coarse-scale total 
velocity. The total velocities depend on pressure through Darcy’s law: u 
= − k ∇p and uc = − k* ∇pc. In both Eq. (16) and Eq. (17), the left 
equation is called the pressure equation and the right equation the satu-
ration equation. The goal of two-phase upscaling is to determine k*, φ*, 
λ*(Sc), and f*(Sc). The calculation of k* and φ* is the same as before, 
which makes accurate single-phase upscaling a prerequisite to accurate 
two-phase upscaling (Durlofsky, 2005). 

An important question is whether the assumed forms of the coarse 
Eqs. (15) and (17) are valid? Eq. (15) is indeed on solid theoretical 
ground as it can be derived from Eq. (14) via homogenization (Bourgeat, 
1984; Sáez et al., 1989), assuming spatial scale separation. Eq. (17) on 
the other hand is less so, because the homogenized form of a hyperbolic 
saturation equation at the fine scale is generally a non-local equation at 
the coarse scale (E, 1992; Tartar, 1989; Efendiev et al., 2000). In an 
interesting analysis by Hou et al. (2006), the nonlocality was captured 
by a projection operator that integrates fine-scale fluctuations along 
streamlines. But since non-local equations are undesirable from a 
computational respect, leading to dense matrices and/or requiring 
excessive storage, local approximations have been sought (Efendiev and 
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Durlofsky, 2003). For example, Sáez et al. (1989) derived a local two- 
saturation equation at the coarse scale for a two-porosity medium 
under the assumption that the fine- and coarse-scale temporal dynamics 
are separated. Despite its heuristic form, experience has shown that Eq. 
(17) leads to acceptable coarse-scale predictions in many geologically 
complex settings (Durlofsky and Chen, 2012; Chen and Durlofsky, 
2006a). 

The second classification of upscaling methods, based on the algo-
rithm used to compute coarse-scale parameters, includes local, extended 
local, global, local-global (or quasi-global), and ensemble-level methods. We 
describe each method briefly and with reference to the schematic in 
Fig. 6. For simplicity, we limit ourselves to single-phase upscaling and 
the computation of k* in Eq. (15). The ideas that follow can be gener-
alized to two-phase upscaling, for which we provide appropriate 
references. 

Consider the global domain in Fig. 6a consisting of fine grids (thin 
lines) and coarse grids (thick lines). The dots mark the location of the 
coarse-scale unknowns pc. The ratio between the size of a coarse grid to 
that of a fine grid is called the “coarsening ratio” and is equal to three in 
Fig. 6a. Our goal is to calculate k* for the green highlighted coarse grid. 
In local upscaling (Durlofsky, 1991; Pickup et al., 1994), k* is obtained 
by performing fine-scale calculations over the highlighted coarse grid 
only; see Fig. 6b. In extended local upscaling (Gomez-Hernandez, 1991; 
Wen et al., 2003), the support of fine-scale calculations is expanded to 
include one (or more) layers of the surrounding coarse grids; see Fig. 6c. 
An important issue in both methods is the choice of boundary conditions 
(BCs) imposed on the local regions. In local upscaling, several such BCs 
exist. The simplest condition is the so-called “pressure-no flow” BC. The 
idea is to impose a pressure gradient along one of the coordinate di-
rections and seal off the remaining lateral boundaries (Farmer, 2002; 
Durlofsky, 2005). The disadvantage is that the computed k* is always 
diagonal. This is incorrect if bedding planes are not aligned with the grid 
lines. Another option is to impose periodic BCs (Durlofsky, 1991; Pickup 
et al., 1994). This results in a full-tensor k*. The advantage of periodicity 
is that k* is guaranteed to be symmetric and positive definite (see Boe 
(1994) for proof), consistent with the second law of thermodynamics 
which precludes upgradient flow. Other BCs are discussed in (Gomez- 
Hernandez, 1991; Boe, 1994). We note in passing that local BCs are 
particularly important in two-phase upscaling, for which specialized 
saturation BCs have been proposed (Wallstrom et al., 2002). Despite the 
computational efficiency of local upscaling, the BCs imposed on each 
coarse grid are somewhat arbitrary and account for most of the 
upscaling error (the rest comes from assumptions made to formulate the 
coarse-scale Eq. (15)). Extended local upscaling alleviates the short-
coming by adding a border region around each coarse grid, Fig. 6c. But 
the BCs imposed on the extended region itself are just as arbitrary. 

The desire to improve the BCs on coarse grids has motivated the 
development global (White and Horne, 1987; Holden and Nielsen, 2000) 
and local-global (Chen et al., 2003; Chen and Durlofsky, 2006b) 
upscaling methods, in which local BCs are determined from global 
computations.4 In global upscaling, the fine-scale Eq. (14) is solved over 
the entire domain (Fig. 6a). The resulting flow field is then used to derive 
k* for each coarse grid. Global upscaling is more accurate than local and 
extended local methods, but it is also more expensive (Chen and Li, 
2009). The high cost of global fine-scale simulations is justified by the 
fact that the coarse model can be reused later. Even so, for problems that 
are too large or involve time-dependent global fine-scale simulations, 
like two-phase flow, global upscaling can be prohibitive. 

Local-global methods were conceived to reduce the computational 

cost of global upscaling while retaining similar accuracy. Fig. 6d depicts 
the idea. A global coarse-scale simulation is performed to provide local 
BCs to an extended region around the green highlighted coarse grid. A 
fine-scale problem is then solved over this region yielding k* for the 
coarse grid. The k* for all coarse grids are computed in this manner and 
fed back into another coarse-scale simulation. The process is repeated 
for a few iterations (<5; see Chen et al., 2003; Chen and Li, 2009; 
Kolyukhin and Espedal, 2010) until a “self-consistent” solution is 
reached. Several variants of local-global upscaling exist, among which 
adaptive local-global methods (Chen and Durlofsky, 2006b; Kolyukhin 
and Espedal, 2010; Chen and Li, 2010) have proved particularly robust 
in both single-phase and two-phase upscaling. The advantages of 
adaptive methods are twofold: computations are localized, which re-
duces cost, and the occurrence of artifacts in k* (e.g., negative eigen 
values) is reduced. 

In global and local-global upscaling, flow problems must be solved 
on the entire domain (Fig. 6a). A key question is then what global BCs 
should be imposed on the domain? Two options exist (Durlofsky and 
Chen, 2012): (1) “generic flow”, and (2) “specific flow”. Generic flow 
means to impose uniform flow (or pressure gradient) along each of the 
coordinate directions, resulting in a total of two simulations in 2D and 
three simulations in 3D. Generic flow produces k* values that tend to be 
robust: the upscaled model is reusable under a wide range of flow 
conditions and global BCs. Specific flow means to impose global BCs that 
are sufficiently similar to those of a particular problem of interest. For 
example, we may want to apply the upscaled model to a specific 
constellation of wells in a petroleum reservoir. Specific flow BCs lead to 
more accurate, but less robust, k* compared to generic flow BCs. 
Although, modest changes in flow conditions seem to be within toler-
ance (Chen and Durlofsky, 2006b). 

Finally, ensemble-level upscaling is designed to accurately repro-
duce, not the flow field of a specific realization, but the statistics of all 
plausible realizations of the flow field (Durlofsky and Chen, 2012; Li and 
Durlofsky, 2016). This is motivated by using upscaling in the context of 
uncertainty quantification. In ensemble-level upscaling, any one of the 
local or global methods can be used to calculate upscaled parameters for 
a small fraction (~10%) of the realizations. Statistical mappings are then 
constructed that relate upscaled parameters, like k*, to easily calculated 
attributes of the coarse grids. An example of such an attribute is the 
distribution of permeabilities in neighboring coarse grids. Upscaling for 
the remaining realizations (~90%) is accomplished by simply mapping 
the precomputed attributes of all the coarse grids to the upscaled 
parameter of interest. 

Eq. (17) is often discretized with the finite volume method over the 
coarse grids. In finite volume, a quantity called “transmissibility” is 
assigned to each interface between adjacent coarse grids, which can be 
thought of as a (nonlinearly) weighted interface permeability. Trans-
missibilities are used to compute flowrates across grid interfaces. In all 
the upscaling methods discussed so far, it is possible to compute 
upscaled parameters over either the volume of each coarse grid, like k*, 
or the interface shared between adjacent coarse grids, see Fig. 6e. The 
latter yields, in the context of single-phase upscaling, the upscaled 
transmissibility, T*, that can be used in subsequent coarse-scale simu-
lations with the finite volume method (Durlofsky and Chen, 2012). 
While we did not discuss transmissibility upscaling in detail, several 
studies suggest it to be more accurate than permeability upscaling (Chen 
et al., 2003; Romeu and Noetinger, 1995). 

So what are the limitations and pitfalls of numerical upscaling? The 
first concerns local and extended local upscaling, and we demonstrate it 
by invoking a simple example devised by Farmer (2002). Consider the 
two layered coarse grids i and i + 1 in Fig. 7, which share an interface. 
Our goal is to compute k* for grid i in the horizontal direction. If the 
layers of grid i + 1 align with those of grid i at the interface (Fig. 7a), 
then local upscaling produces the exact value of k* (arithmetic mean). If 
the layers do not align (Fig. 7b), then local upscaling does not see the 
discontinuity at the interface and instead of predicting a smaller value of 

4 Interestingly, the development of global upscaling seems to have predated 
local upscaling (Renard and de Marsily, 1997; White and Horne, 1987). 
Therefore, global upscaling may have been motivated less by the inadequacies 
of local upscaling and more by an expectation that local BCs are important for 
obtaining accurate upscaled parameters. 
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k*, it yields the same value as before (Fig. 7a). Moreover, the error in k* 

increases as the contrast between the layer permeabilities, k1 and k2, is 
amplified. Extended local upscaling, by contrast, does detect the 
discontinuity and leads to a better estimate of k*. But we could then 
construct a similar example that would cause extended local upscaling 
to fail too, by simply moving the discontinuity to the border of the 
extended local region (Fig. 6c). The same argument holds for trans-
missibility upscaling (Fig. 6e), i.e., the discontinuity could be placed at 
the center of a coarse grid. Farmer’s example highlights a fundamental 
challenge in (extended) local upscaling: how to a priori select the size of 
the (extended) local coarse grids (Kolyukhin and Espedal, 2010). Flow- 
based gridding (Durlofsky, 2005) is a promising solution but requires 
global calculations of the flow field. 

A second pitfall of upscaling is that, except for local upscaling 
(Fig. 6b), all other techniques are susceptible to producing k* tensors 
that violate either symmetry or positive definiteness (Durlofsky, 2005). 
In the case of transmissibility upscaling (Fig. 6e), T* may be negative, 
which is unphysical. The reason is most methods determine k* using a 
least squares approach that imposes symmetry only weakly (and rarely 
positive definiteness). In practice, k* is symmetrized ex post facto by 
simply taking the average of k* with its transpose. And violations of 
positive definiteness are treated by replacing anomalous k* tensors with 
values obtained from local upscaling (Durlofsky, 2005). Anomalous k* 

are observed typically in regions where flowrates are small in magni-
tude, and thus the mean flow has indefinite direction. Adaptive local- 
global upscaling excludes such regions from calculations altogether, 
which has the added benefit of reducing computational cost (Chen and 
Durlofsky, 2006b). 

Another pitfall of numerical upscaling concerns downscaling. With a 
few exceptions (Chen et al., 2003; Gautier et al., 1999), once the coarse- 
scale equations are parameterized, they are used to perform simulations 
with no further recourse to the fine scale. While this is often acceptable 
for single-phase flow simulations, where the governing equations are 
either elliptic or parabolic with relatively smooth solutions, it is 
generally unacceptable for two-phase flow simulations, where the 

saturation equation is hyperbolic. In Section 3.4.3, we discuss that hy-
perbolic equations exhibit sharp variations at the fine-scale and thus 
require some form of downscaling. In numerical upscaling, the satura-
tion equation can be solved in three ways. The first is to perform single- 
phase upscaling, to obtain k* and φ*, and then discretize and solve the 
fine-scale saturation equation in Eq. (16) on the coarse grid. The second is 
to perform two-phase upscaling and then solve the coarse-scale satura-
tion equation in Eq. (17) on the coarse grid. The third, is to perform 
single-phase upscaling, reconstruct the fine-scale velocity with a method 
similar to that proposed by Gautier et al. (1999), and then solve the fine- 
scale saturation equation in Eq. (16) on the fine grid. The first incurs large 
errors if sharp saturation gradients exist at the fine scale. The second 
alleviates these errors to a degree, and the third removes them almost 
completely. For strongly hyperbolic saturation equations, the third 
approach may be the only reliable option (see discussion in Section 
3.4.3). 

Perhaps the most important limitation of numerical upscaling is that 
there is no built-in mechanism to a priori estimate or control errors. 
Local-global methods are capable of iteratively improving the quality of 
coarse-scale predictions, but iterations result in solutions that are “self- 
consistent” not convergent (to the averaged fine-scale solution). Several 
studies (Chen et al., 2003; Kolyukhin and Espedal, 2010) show that an 
irreducible error persists even after a large number of iterations. Algo-
rithms that provide a priori estimates of such errors are valuable, espe-
cially when upscaling is applied to cases for which no prior test cases 
exist, because they allow users to assess the reliability of coarse-scale 
predictions. If predictions are deemed unreliable, a separate algorithm 
that can control the errors may be used to guarantee a reliable solution. 
Multiscale methods (Section 3.4) possess such built-in algorithms 
(Hajibeygi et al., 2008; Lunati et al., 2011) that allow them to converge 
arbitrarily close to the exact solution. Considering the main difference 
between multiscale methods and numerical upscaling is that the latter 
assumes a specific form for the coarse-scale equations, one may conclude 
that the lack of convergence in upscaling is rooted in its insistence on 
computing upscaled parameters (not equations). If this requirement were 
to be lifted, convergence might follow, but then the benefit of obtaining 
coarse-scale parameterizations (if necessary) is lost. Various “error 
models” for upscaling have been proposed (Lødøen et al., 2005; Glimm 
et al., 2001; O’Sullivan and Christie, 2005) and they provide a promising 
route to quantifying errors. However, such models are statistical and, 
thus, do not provide the means to control errors of a particular 
realization. 

3.4. Multiscale computing 

Multiscale computing aims to obtain the solution of a partial differ-
ential equation (PDE) by performing calculations at two or more 

Fig. 6. Schematic of various upscaling methods. (a) Global domain with fine grids (thin lines), coarse grids (thick lines), and coarse-scale unknowns (dots). Green 
highlights the coarse grid subject to upscaling. (b) Local upscaling performs local fine-scale calculations on the green grid only. (c) Extended local upscaling includes 
a layer (or more) of neighboring coarse grids into the local fine-scale calculations. (d) Local-global upscaling uses global coarse-scale simulations on (a) to determine 
local fine-scale BCs on (d). The coarse-grid parameters derived for the green coarse grid are then fed back to another global coarse-scale simulation on (a). (e) Instead 
of k*, one may upscale the transmissibility, T*, at the interfaces (red) between adjacent coarse grids. 

Fig. 7. Schematic of two adjacent coarse grids i and i + 1. Each block consists 
of two types of horizontal layers. The permeability of the blue layers is k1 and 
that of the yellow layers is k2. (a) Layers of the two grids align at the interface. 
(b) Layers do not align at the interface. Local upscaling fails in (b) but not in (a). 
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spatiotemporal scales. As opposed to numerical upscaling, where the 
goal is to parameterize a postulated coarse-scale equation and then use it 
to obtain an approximate coarse-scale solution, the goal of multiscale 
methods is to compute the solution directly. No coarse-scale equation is 
postulated or parameterized. Multiscale methods produce solutions on 
both a coarse grid, like numerical upscaling, and a fine grid, unlike 
numerical upscaling. The coarse-scale solution is a consistent repre-
sentation of the fine-scale solution, with the latter obtained by down-
scaling the former (made precise later). While multiscale methods are 
not designed to compute coarse-scale parameters, some do arise natu-
rally from their mathematical formulation as discussed later (e.g., flux 
matrices). Such parameters allow useful comparisons to be made be-
tween multiscale and upscaling methods. As discussed in Section 3.2, 
multiscale methods also differ (but only in technical details) from hybrid 
methods. In hybrid methods, a coarse-scale equation is solved together 
with a fine-scale equation by using separate models for each. The coarse- 
scale equation is an analytically homogenized PDE. In multiscale 
methods, no homogenized coarse-scale equations are required. Instead, 
an algebraic coarse-scale problem (or system) is formulated that is 
consistent with the fine-scale equations. Hence, there is no need for 
separate models at different scales, which makes multiscale methods 
algorithmically simpler. Most importantly, multiscale methods have the 
ability to estimate and control prediction errors, because they have a 
built-in mechanism for convergence. Numerical upscaling and hybrid 
methods lack this capability, and while their solutions are internally 
consistent, they do not, and are not meant to, satisfy the fine-scale PDE. 

The motivation for using multiscale methods is the same as numer-
ical upscaling: subsurface geomodels are too complex and computa-
tionally too expensive to perform conventional single-scale 
simulationsover a fine grid. The workflow of multiscale methods is as 
follows: (1) divide the geomodel into a number of coarse grids, each 
consisting of many fine grids; (2) perform local fine-scale calculations on 
each coarse grid to construct a set of local basis functions; (3) formulate 
a coarse-scale problem and solve it to obtain a coarse-scale solution; and 
(4) reconstruct the fine-scale solution by using the basis functions and 
the coarse-scale solution from step 3. Step 2 is amenable to parallelism 
and step 3 is computationally much cheaper than global fine-scale 
simulations common in single-scale methods. Step 4 is a downscaling 
step that may be omitted if only a coarse-scale solution is desired 
(Section 3.4.3). 

The literature on multiscale methods is vast but has its origins in the 
mid-1980s to early 2000s (Babuška and Osborn, 1983; Babuška et al., 
1994; Hou and Wu, 1997; Chen and Hou, 2002; Jenny et al., 2003). Our 
intent is not to cover all of the contributions since, but to provide a 
representative cross-section of the available ideas to the uninitiated 
reader and hopefully add new insights as to where the state-of-the-art 
lies relative to what may be possible in the near future. In Section 
3.4.1, we discuss multiscale methods designed to solve continuum- or 
Darcy-scale problems, among which we focus on: multiscale finite 
element (MsFE), mixed multiscale finite element (MxMsFE), multiscale 
finite volume (MsFV), and multiscale mortar finite element (MoMsFE). 
The important class of variational multiscale methods (Hughes, 1995; 
Hughes et al., 1998; Arbogast, 2012) is not discussed. Section 3.4.2 is 
devoted to multiscale methods designed for pore-scale problems, in 
which we discuss: straightforward extensions of Darcy-scale methods to 
the pore scale, reinterpretation of pore-network models (PNM) as nu-
merical upscaling, and a recent pore-level multiscale method (PLMM). 
Section 3.4.3 discusses the role of downscaling in obtaining reliable 
coarse-scale predictions of subsurface processes. We conclude with 
Section 3.4.4, in which we introduce the idea of a “flux matrix” and 
propose an algorithmic way of bridging some of the gap between pore- 
and Darcy-scale physics. 

3.4.1. Darcy scale 
In the following sections, we discuss several multiscale methods in 

the context of a prototypical problem of practical interest in subsurface 

applications: flow of two immiscible fluids in a porous medium. The 
governing equations are 

ϕ
∂Sw

∂t
+∇⋅uw = − qw (18a) 

ϕ
∂So

∂t
+∇⋅uo = − qo (18b)  

where 

uw = − λw∇p λw = kkrw/μw
uo = − λo∇p λo = kkro/μo

(18c)  

Eq. 18a-b describes the conservation of mass for water, subscript w, and 
oil, subscript o. φ denotes porosity, Sw and So water and oil saturations, 
uo and uw phase fluxes, and qw and qo source terms due to injector or 
producer wells. Eq. (18c) is a statement of Darcy’s law for multiphase 
flow, where λw and λo denote water and oil motilities, k absolute 
permeability, krw and kro relative permeabilities of water and oil, and μw 
and μo viscosities of water and oil. Eq. (18) neglects effects due to 
gravity, capillarity, and compressibility. In computer simulations, a 
different but equivalent formulation of Eq. (18) is preferred, which is 
given by 

∇⋅(λ∇p) = q (19a) 

ϕ
∂Sw

∂t
+∇⋅(fwu) = − qw (19b)  

where 

u = − λ∇p λ = λo + λw (19c) 

In Eq. (19), λ is the total mobility, u is the total velocity (u = uo + uw), 
and q is the total volumetric source term (q = qo + qw). Eq. (19a) is 
obtained by adding Eqs. (18a) and (18b), whereas Eq. (19b) is just a 
restatement of Eq. (18a). Eq. (19) is preferred over Eq. (18) because it 
decouples the elliptic character of the problem, captured by Eq. (19a), 
from its hyperbolic character, captured by Eq. (19b). Elliptic equations 
tend to have smooth solutions that are amenable to coarse-scale 
approximation. A small perturbation in the parameters of an elliptic 
equation (e.g., q) affects its solution globally, or over the whole domain. 
Hyperbolic equations, by contrast, tend to have non-smooth solutions 
marked by localized discontinuities and steep gradients. They are less 
amenable to coarse-scale approximation. Moreover, perturbations in the 
parameters of a hyperbolic equation affects its solution locally, or over 
part of the domain. For these reasons, the computational cost of solving 
elliptic (and parabolic) equations is often much higher than that of 
solving hyperbolic equations, where adaptivity and explicit time step-
ping may be utilized. Most multiscale methods have therefore been 
developed to accelerate the solution of elliptic (and parabolic) equations 
such as Eq. (19a). The fine-scale velocity u obtained from solving Eq. 
(19a) (and using Eq. (19c)) is subsequently used to solve Eq. (19b) over 
the fine grid; although nothing prevents one from solving it over the 
coarse grid instead. In Sections 3.4.1.1–4, we focus on Eq. (19a) and 
describe various multiscale methods developed to solve it. We refer, 
henceforth, to Eq. (19a) as the flow equation and to Eq. (19b) as the 
transport equation. 

Multiscale methods are described with reference to Fig. 8, which 
depicts a global domain (Fig. 8a) consisting of coarse grids (thick lines) 
and fine grids (thin lines). Each coarse grid contains nine fine grids, 
though the number is much larger in practice. Both grid types are 
assumed to be Cartesian, but more complicated unstructured grids are 
also possible. The coarse-scale pressure unknowns are depicted by filled 
circles, whose spatial arrangement differs between methods. Our dis-
cussion focuses only on the main ideas of each method and ignores all 
fine-scale discretization details. For ease of reference, we restate the 
three steps common to all multiscale methods with respect to Eq. (19a) 
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1. Build basis functions for each coarse grid by solving a localized 
version of Eq. (19a)  

2. Formulate and solve a coarse-scale problem to obtain a coarse-scale 
solution to Eq. (19a)  

3. Reconstruct the fine-scale pressure and velocity solutions to Eq. 
(19a) needed to solve Eq. (19b) 

Multiscale methods differ only in the specifics (numerics, gridding, 
etc.) of each step. Step 1 is the most important as it determines the 
overall accuracy and convergence rate of a method (Hou et al., 1999). 
Many have therefore urged further research towards improving the 
quality of local bases by devising better BCs on the coarse grids (Babuška 
and Osborn, 1983; Hou et al., 1999). The reconstructed fine-scale ve-
locity, u, in step 3 must be divergence-free to be useful in subsurface 
applications. If not, large errors in the subsequent solution of the 
transport Eq. (19b) result. Step 3 is optional if no transport equation is to 
be solved and only a coarse-scale solution to Eq. (19a) is desired. 

3.4.1.1. Multiscale finite element (MsFE). Consider the global domain Ω 
in Fig. 8a. We outline MsFE by first describing standard finite element 
(FE) as it would be applied to discretizing and solving Eq. (19a) on the 
coarse grid (ignoring the fine grid). In FE, Eq. (19a) is expressed in 
variational form by multiplying both sides of it by a sufficiently smooth 
test function and then integrating it over Ω. Assuming no-flux BCs on ∂Ω 
for simplicity, the result is 

a(p, v) = q(v) (20a) 

a(pv) =
∫

Ω

λij
∂v
∂xi

∂p
∂xj

dx q(v) = −

∫

Ω

qv dx (20b)  

where a(p,v) and q(v) are bilinear and linear operators, respectively. Eq. 
(20a) is equivalent to Eq. (19a) in a “weak” sense, provided that it holds 
for all test functions in an appropriately defined function space. The 
solution, p, is sought within another function space. Here, both p and v 
are members of H1, short for the Hilbert space of all functions with 
square-integrable first derivatives. To compute numerically the solution 
of Eq. (19a) on the coarse grid, p and v must be chosen from a finite 

dimensional subspace of H1 equipped with a finite collection of basis 
functions φi. The solution, p, and all test functions, v, can then be 
expressed as linear combinations of the bases. In particular, p is written 
as 

p =
∑

i
pc

i φi (21) 

The summation in Eq. (21) is over all the basis functions. The scalar 
multipliers, pi

c, are the coarse-scale (note the superscript) pressure un-
knowns. Each basis φi is non-zero only over one coarse grid, and zero 
outside of it. Hence, φi is said to be defined only on that coarse grid. Let 
Ωc denote the green highlighted coarse grid in Fig. 8a and h its size. In 
FE, φi is chosen to be a simple function such as a piecewise polynomial. 
As an example, let φi be a piecewise bilinear function. For the Cartesian 
Ωc, four such bases can be defined as shown in Fig. 8b. Namely, φi as-
sumes the value one at one of the four corners of Ωc (red dot in Fig. 8b) 
and zero at the remaining corners (black dots in Fig. 8b). The edge values 
of φi vary linearly between the corner values. The coarse-scale un-
knowns, pi

c, correspond to the pressure values at the corners of Ωc. 
Similar bases and coarse-scale unknowns are defined on all other coarse 
grids of Ω. A crucial feature of FE is that φi is chosen (bilinear here) 
independently from the underlying fine-scale variability of λ over Ωc. Let 
the spatial correlation length of such fluctuations be ε. If ε ≪ h, then it is 
obvious that a polynomial φi leads to a bad approximation of the fine- 
scale pressure over Ωc (see Eq. (19a)). The only way the approxima-
tion would be good is if the amplitude of the λ fluctuations is small, i.e., λ 
is approximately homogeneous over Ωc. Of course, if h ≪ ε, then φi is 
adequate and FE yields an accurate solution. Unfortunately, geologic 
porous media are heterogeneous and exhibit large oscillations, of several 
orders of magnitude, in λ at the fine scale. To obtain an accurate solu-
tion, FE must use grids that satisfy h ≪ ε, which is computationally 
prohibitive as this is equivalent to solving a fine-scale problem over Ω. 

The key contribution of Babuška and Osborn (1983), Babuška et al. 
(1994), Hou and Wu (1997), Hou et al. (1999), and many others since, 
has been to choose φi such that it is informed by the fine-scale variability 
of λ over Ωc. This is accomplished by requiring that each φi satisfy 

Fig. 8. Schematic of different multiscale methods. (a) Global domain with coarse grids (thick lines) and fine grids (thin lines). (b) MsFE: four bases (A to D) are 
constructed per coarse grid (green). Pressure is set to one at the red nodes and to zero at the black nodes. Linear pressure, or the 1D solution of Eq. (24), along the 
edges is imposed as the BCs of Eq. (22). The dashed green box in (a) is the “oversampling” region for the green coarse grid. (c) MxMsFE: bases are associated with the 
interfaces between adjacent coarse grids. The flux is set to one (left-to-right) at the interface (red) between the two grids and to zero along their remaining boundaries 
(blue). Uniformly distributed source and sink terms are added, respectively, to the light and dark green grids to ensure solvability of the basis functions. (d-e) MsFV: 
coarse-scale unknowns are defined at primary grid centers; dots in (a). Dual bases (A to D) are constructed on each dual grid (orange box) in exactly the same way as 
(b). (e) Primal bases are built by setting the pressure at node j (red) to one and at all the other 8 nodes (black) to zero. The reconstructed flux on the red highlighted 
boundary is then used as a Neumann BC to compute one of the primal bases of grid i. The remaining 8 primal bases are obtained by moving j to the other notes (back) 
in (e). 
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∇⋅(λ∇φi) = 0 (22)  

over Ωc. When λ is oscillatory, Eq. (22) ensures that φi is too. This simple 
but crucial modification to φi is the essence of multiscale finite element 
(MsFE). Each basis, φi, is numerically computed by discretizing and 
solving Eq. (22) over a set of fine grids that comprise Ωc. Notice the 
departure from FE through the introduction of fine grids in addition to 
coarse grids. When ε ≪ h, substituting φi from Eq. (22) into Eq. (21) 
results in a much more accurate solution, p, than if φi is chosen to be a 
polynomial. And when h ≪ ε, MsFE reduces to FE, as both resolve fine- 
scale variabilities in λ and are thus equally accurate. To compute pi

c in 
Eq. (21), a coarse-scale problem is formulated by simply substituting Eq. 
(21) into Eq. (20a) and setting the test functions, v, equal to an arbitrary 
basis function φj. The result is a linear system in terms of pi

c, whose 
coefficient (or stiffness) matrix consists of entries of the form 

Kij =

∫

Ω

λkl
∂φi

∂xk

∂φj

∂xl
dx (23) 

Despite the apparent simplicity of MsFE, its main challenge, as with 
all multiscale and numerical upscaling methods, is in the definition of 
the BCs needed to solve Eq. (22) on Ωc. Such BCs are inherently 
approximate, because exact knowledge of them would require the global 
fine-scale solution itself. The specific choice of BCs on Ωc is sometimes 
called numerical closure (or localization assumption) and is the only 
significant source of error in not just MsFE, but all multiscale and 
upscaling methods. The more accurate the BCs, the more accurate the 
solution, p. The simplest BCs on ∂Ωc, the boundary of Ωc, are the same as 
the bilinear φi described earlier. Namely, one or zero at the corners of Ωc 

and linear variations along the edges. A more accurate alternative, 
suggested by Hou and Wu (1997), is to solve the following 1D problem 
along each of the four edges of Ωc subject to the zero/one corner values 
depicted in Fig. 8b 

∂
∂xt

(λ∇φi)t = 0 (24)  

Eq. (24) is the 1D version of Eq. (22) along the tangent coordinate, t, to 
each edge. Eq. (24) assumes that the fluxes normal to ∂Ωc do not interact 
with those tangent to it. In other words, tangential fluxes are conserved 
independently from normal fluxes on ∂Ωc. The BCs obtained from Eq. 
(24) are more accurate than the linear BCs for the same reason that the 
basis functions obtained from Eq. (22) are more accurate than the 
bilinear basis functions in FE: Eq. (24) accounts for the fine-sale vari-
ability of λ (Hou et al., 1999). 

While Eq. (24) has proved successful in many applications (Hou and 
Wu, 1997; Efendiev and Hou, 2008), it remains an approximation whose 
errors may be large depending on the variability of λ and the relative 
magnitudes of h and ε. If scale separation holds for λ (fluctuations are 
stationarity with finite correlation length), then as ε/h ➔ 0 the MsFE 
solution p converges to the solution of the homogenized (not pointwise) 
form of Eq. (19a) (not shown). Hou and Wu (1997) and Hou et al. (1999) 
showed that the (L2-)errors scale as O(ε/h). But this means that if ε ≈ h, 
then the errors are of O(1) even in the limit h and ε ➔ 0. Hou and Wu 
(1997) and Hou et al. (1999) called this the resonance effect, in which the 
size of fine and coarse grids conspire to prevent errors from vanishing. 
Intuitively, the finding implies that if the coarse and fine grids are of 
comparable size, then the errors can be large. To reduce resonance, Hou 
and Wu (1997) proposed the idea of “oversampling”, in which the BCs of 
φi are determined not from Eq. (24), but from solving Eq. (22) over an 
enlarged region containing Ωc; dashed green box in Fig. 8a. The solution, 
ψ j, on the oversampling region is used to extract the BCs of φi on ∂Ωc. In 
practice however, instead of re-solving Eq. (22) on Ωc with the new BCs, 
one may obtain φi by first cropping ψ j to fit Ωc and then rescaling it so 
that φi assumes either one or zero at the corners of Ωc. Oversampling 
improves the accuracy of MsFE for the same reason that extended local 
upscaling improves the accuracy of local upscaling: better local BCs. But 

it also shares the same drawback as extended local upscaling: how big 
should the oversampling region be? 

We conclude with three remarks. If only the coarse-scale solution, pi
c, 

is desired, the fine-scale bases, φi, can be discarded right after the coarse- 
scale stiffness parameters Kij are computed for all ij. This makes MsFE 
very similar to numerical upscaling. MsFE yields only an approximate 
solution to Eq. (19a). One way to control these (pointwise) errors is to 
use MsFE as a global preconditioner to standard FE (Castelletto et al., 
2017), a point which we expound on in the context of MsFV (Section 
3.4.1.3). Despite the successful application of MsFE in many complex 
problems (Efendiev and Hou, 2008), its main disadvantage is that the 
fine-scale velocity, u, is not divergence-free. This is partly because FE, 
used as the fine-grid solver to compute φi from Eq. (22), is not conser-
vative. Another reason is that the p obtained from MsFE (Eq. (21)) has 
discontinuous first derivatives, and thus u, across shared boundaries 
between adjacent coarse grids. Both MxMsFE and MsFV, discussed next, 
address this shortcoming. The reader is referred to Efendiev and Hou 
(2008) for further details on MsFE. 

3.4.1.2. Mixed multiscale finite element (MxMsFE). Similar to Section 
3.4.1.1, we outline MxMsFE by first describing standard mixed finite 
element (MxFE) as it would be applied to discretizing and solving Eq. 
(19a) on the coarse grid (ignoring the fine grid). MxFE can be thought of 
as a flux-conservative version of FE (Gatica, 2014). Flux conservation is 
achieved by introducing two sets of unknowns into the discretized 
problem: one for pressure and another for velocity. The velocity un-
knowns are defined over shared edges between adjacent grids, and 
ensure that fluxes are continuous across grid boundaries. The scheme is 
therefore conservative by construction. A variational form of Eq. (19a) is 
first derived by splitting it into two first-order equations, one repre-
senting Darcy’s law and the other mass conservation. Each equation is 
then multiplied by a test function and integrated over Ω 
∫

Ω

λ− 1u⋅v dx −
∫

Ω

p∇⋅v dx = 0 (25a) 

∫

Ω

ω∇⋅u dx +
∫

Ω

qω dx = 0 (25b)  

Eqs. (25a) and (25b) are, respectively, the “weak” forms of Darcy’s law 
and mass conservation. For simplicity, no-flux Neumann BCs are 
assumed on ∂Ω. Eq. (25) is equivalent to Eq. (19a) provided that it holds 
for all test functions v and ω chosen from appropriately defined function 
spaces. The definition of such spaces is not trivial and we refer to Gatica 
(2014) for details. To numerically solve Eq. (25) on the coarse grid, one 
must select p, u, v, and ω from finite dimensional subspaces of the original 
function spaces. It is possible to then write p and u as linear combina-
tions of a finite number of pressure, φi, and velocity, ψ j, basis functions 
as follows 

p =
∑

i
pc

i φi u =
∑

j
uc

j ψj (26)  

where the multipliers pi
c and uj

c denote the coarse-scale pressure and 
velocity unknowns, respectively. In MxFE, simple bases, like poly-
nomials, are selected for φi and ψ j. A popular choice is the lowest order 
Raviart-Thomas bases, RT0, where φi is a piecewise constant function on 
each coarse grid and ψ j is a piecewise linear vector function with a 
constant divergence over each coarse grid. A key feature of MxFE is that 
the normal components of the velocity bases, ψ j, match up (or are 
continuous) along shared coarse-grid boundaries. From the discussion in 
Section 3.4.1.1, it must by now be clear that if ε ≪ h, then polynomial 
bases like RT0 will not capture the fine-scale variability of λ and can thus 
lead to large errors. 

Multiscale mixed finite element (MxMsFE) replaces bases like RT0 
with ones that are informed by the fine-scale variability of λ. Chen and 
Hou (2002) proposed the following formulation of MxMsFE, based on 
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modifying MxFE. Consider the pair of light and dark green coarse grids 
in Fig. 8c. Denote the left grid by ΩL

c and the right grid by ΩR
c. Let Γ 

denote the shared interface between them. Let the pressure bases 
defined on ΩL

c and ΩR
c be φL and φR, and the velocity bases associated 

with Γ and defined on ΩL
c and ΩR

c be ψL and ψR, respectively. The 
pressure bases φL and φR are chosen to be the same as those in MxFE: 
constants over ΩL

c and ΩR
c. But the velocity bases ψL and ψR are set 

equal to − λ∇θ on ΩL
c and ΩR

c, respectively, where θ is the solution of the 
following boundary-value problem on ΩL

c ∪ ΩR
c 

∇⋅(λ∇θ) = +
1
⃒
⃒Ωc

R

⃒
⃒

on Ωc
R (27a) 

∇⋅(λ∇θ) = −
1
⃒
⃒Ωc

L

⃒
⃒

on Ωc
L (27b) 

λ∇θ⋅n = 0 λ∇θ⋅nΓ = −
1
|Γ|

(27c) 

In Eq. (27c), n is the normal vector on the external boundary of ΩL
c ∪

ΩR
c (blue in Fig. 8c) and nΓ is the normal on Γ (red in Fig. 8c) pointing 

from left to right. The intuitive meaning of Eq. (27a-b) is to impose a 
uniform flux of magnitude 1/|Γ| (total flowrate equal to one) from left to 
right across Γ and to seal off the remaining boundaries of ΩL

c ∪ ΩR
c (see 

Fig. 8c). To balance the imposed interface flux, a spatially uniform 
source term of magnitude one is added to ΩL

c, and an identical sink term 
is added to ΩR

c (see Fig. 8c). The balance of source, sink, and interface 
fluxes ensures the solvability of Eq. (27). Eq. (27) yields one velocity 
basis for ΩL

c, ψL, and another for ΩR
c, ψR, both associated with the 

interface Γ. Similar equations are solved for all other coarse-grid in-
terfaces in Ω. Once all ψ j are computed, they are inserted into Eq. (26) 
along with φi, for which no calculations were performed, to obtain p and 
u. To formulate a coarse-scale problem (or linear system) in terms of pi

c 

and uj
c, Eq. (26) is substituted into Eq. (25) and the test functions v and ω 

are, respectively, set equal to an arbitrary choice of the velocity and 
pressure basis functions. The method is thereby complete. 

A few remarks are now in order. Note that the basis problem, Eq. 
(27), is markedly different from MsFE in Section 3.4.1.1. Eq. (27) is a 
Neumann problem which, unlike MsFE, guarantees that fluxes are 
continuous across Γ. Also note the fine-scale pressure p, in Eq. (26), is 
identical to the coarse-scale pressure because φi was chosen to be a 
constant over each coarse grid. Therefore, the above version of MxMsFE 
captures the impact of fine-scale variabilities of λ on u but not p. Aarnes 
(2004) and Aarnes et al. (2005) proposed a way to recover the fine-scale 
variabilities of p. Modifications to Eq. (27) for coarse grids that contain 
point sources, like wells, were also proposed. Finally, Aarnes (2004) 
suggested that instead of imposing a uniform flux of 1/|Γ| across Γ in Eq. 
(27), a better option might be to impose a non-uniform λ-weighted flux 
with, again, a total flowrate equal to one. 

We note that other MxMsFE formulations related to, but different 
from, the above have also been proposed in the variational context 
(Arbogast et al., 1998; Arbogast, 2002). An interesting one is by Arbo-
gast (2002), where two sets of finite element spaces are defined: RT0 for 
the fine grid and a higher-order Brezzi-Douglas-Duran-Fortin (BDDF1) 
space (Brezzi et al., 1987) for the coarse grid. Velocities in the RT0 space 
do not contribute to any fluxes crossing the coarse-grid boundaries, only 
those in the BDDF1 space do. The two spaces allow p and u to be written 
as decompositions of a coarse-grid component and a fine-grid compo-
nent. Substituting the decompositions into the variational form, Eq. 
(25), and testing the latter with only RT0 basis functions on a coarse 
grid, yields the basis problem associated with that coarse grid; which 
differs from Eq. (27). The coarse-scale problem is formulated by testing 
Eq. (25) with only BDDF1 basis functions. Accurate results were re-
ported for highly variable λ and h/ε values up to 100. The reader is 
referred to Arbogast (2012) for a detailed yet clear presentation of 
MxMsFE. 

3.4.1.3. Multiscale finite volume (MsFV). Similar to MxMsFE, multiscale 

finite volume (MsFV) guarantees mass conservation over both the course 
grid and the fine grid. But unlike MxMsFE, it does so with much fewer 
degrees of freedom, as pressure is the only unknown compared to 
pressure and velocity in MxMsFE. Since its inception by Jenny et al. 
(2003), MsFV has evolved significantly and has been applied to a variety 
of practical problems in the subsurface including two-phase flow (Jenny 
et al., 2004, 2006), compressible gas flow (Lunati and Jenny, 2006), 
black-oil model (Lee et al., 2008), near-well flow (Wolfsteiner et al., 
2006), and poromechanics (Castelletto et al., 2019). Here, we confine 
our attention to the original formulation as it encapsulates the main 
ideas. More recent milestones such as correction functions (Lunati and 
Jenny, 2006), iterative correction (Hajibeygi et al., 2008), and algebraic 
formulations (Zhou and Tchelepi, 2008) are briefly discussed. 

In MsFV, the coarse grids depicted by Fig. 8a are called primary grids. 
By connecting the centroids of the primary grids (dots in Fig. 8a), a 
second set of coarse grids, called dual grids, is also constructed (orange in 
Fig. 8a). Coarse-scale pressure unknowns, pi

c, are associated with the 
centroids of the primary grids (or corners of dual grids). Over each dual 
grid, four basis functions for pressure, φi, are constructed in a manner 
identical to that described for MsFE (see Section 3.4.1.1 and Fig. 8b). 
Namely, Eq. (22) is solved on each dual grid, Ωd, subject to either lin-
early varying BCs over the edges of Ωd or BCs that correspond to the 
solution of Eq. (24) over each edge. The value of φi is equal to one at only 
one of the four corners of Ωd (red in Fig. 8d), and zero at the remaining 
corners (black in Fig. 8d). In MsFV, the φi are referred to as dual bases. 
The only difference between the bases in MsFE and the dual bases in 
MsFV is that the latter uses a finite volume method to solve Eq. (22) over 
the fine grids comprising Ωd. To reconstruct the fine-scale pressure, p, an 
equation identical to Eq. (21) is used. The main point of departure in 
MsFV from other multiscale methods is the way the coarse-scale prob-
lem is formulated to obtain pi

c, and the way the conservative fine-scale 
velocity, u, is reconstructed (steps 2 and 3 in Section 3.4.1). 

The coarse-scale problem is obtained by imposing mass conservation 
over each primary grid Ωi

p 

∫

∂Ωp
i

λ∇p⋅n dΓ =

∫

Ωp
i

q dΩ (28)  

Eq. (28) is obtained by integrating Eq. (19a) over Ωi
p and using Gauss’s 

theorem. To convert the left-hand side of Eq. (28) into an expression in 
terms of pi

c, we consider the green-highlighted primary grid, Ωi
p, in the 

bottom-right corner of Fig. 8a. Notice that four dual grids overlap with 
Ωi

p, one of which is highlighted in orange. Since four pressure bases, φj, 
are defined on each dual grid, a total of 16 bases contribute to the net 
flux crossing ∂Ωi

p. The contribution is proportional to the pj
c associated 

with φj, because Eq. (21) is a linear combination. More precisely, the 
left-hand side of Eq. (28) can be expressed as follows 
∫

∂Ωp
i

λ∇p⋅n dΓ =
∑

k
Tijpc

j (29)  

where Tij is the flux contribution of the jth dual basis, φj, on the ith 
primary grid, Ωi

p. The parameters Tij, which can be computed during a 
preprocessing step, are called coarse-scale transmissibilities. The initiated 
reader may recognize the similarity between Tij here and transmissibility 
matrices (over “interaction regions”) in multipoint flux approximation 
(MPFA) schemes used in finite volume methods (Avatsmark et al., 
2008). Eq. (29) expresses the net flux crossing ∂Ωi

p as a linear combi-
nation of Tij weighted by pj

c. Substituting Eq. (29) into Eq. (28) yields a 
linear system in terms of pj

c, which constitutes the coarse-scale problem. 
The fine-scale pressure, p, is obtained from Eq. (21). 

Unfortunately, the fine-scale velocity u derived from p, using u = − λ 
∇p, is discontinuous across dual grid boundaries and is therefore not 
conservative over the fine grid. To address this shortcoming, Jenny et al. 
(2003) introduced a second set of basis functions ψ j, this time for 
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velocity, that are defined on the primary grids and referred to as primal 
bases. Notice the subscript j here indexes the primary grids, unlike Eq. 
(29) where it indexed the dual grids. To construct ψ j, let us again 
consider the green-highlighted primary grid Ωi

p in Fig. 8e. There are 
nine coarse-scale nodes (black dots) that correspond to the corners of 
four neighboring dual grids overlapping Ωi

p. The goal is to compute the 
primal basis ψ j on Ωi

p corresponding to node j. This is done by first 
reconstructing an intermediate velocity field on Ωi

p and then modifying 
it to obtain ψ j. The intermediate velocity, uj

*, is obtained by setting the 
multiplier pj

c in Eq. (21) to one at node j and to zero at the remaining 8 
nodes of Fig. 8e. The resulting p from Eq. (21) is then substituted into uj

* 

= − λ ∇p to obtain uj
* (recall uj

* is discontinuous across dual grid 
boundaries). We then restrict uj

* to ∂Ωi
p, where it is non-zero only on the 

red-highlighted segment in Fig. 8e, and use it as the BCs for a new local 
problem on Ωi

p. This problem is similar to Eq. (19a) and its solution 
yields ψ j. The above steps are repeated for all j corresponding to the 
other eight nodes in Fig. 8e (black dots). Once all nine ψ j are computed, a 
conservative fine-scale u over Ωi

p is reconstructed by superposition of the 
primal bases ψ j weighted by their associated pj

c; the latter obtained from 
solving the coarse-scale problem. 

Primal bases are an efficient way to reconstruct a conservative ve-
locity, u, for the time-dependent transport Eq. (19b), provided that 
changes in λ are either local or small between time steps. If not, dual and 
primal bases must be recomputed periodically, which can be expensive. 
For the 2D domain in Fig. 8a, 4 dual bases per dual grid and 9 primal 
bases per primary grid must be computed. In 3D, these numbers increase 
to 8 per dual grid and 27 per primary grid. The cost is justified only if the 
bases can be reused across multiple time steps or if they require updating 
for only a small fraction of the coarse grids. In the two-phase flow 
simulations conducted by Jenny et al. (2004; 2006), both conditions 
held. But in problems that exhibit strong nonlinearity (Lunati and Jenny, 
2006), like compressible flow, or complex physics (Lunati and Jenny, 
2008), like capillarity and gravity, the primal bases can become 
cumbersome and diminish the flexibility of MsFV. A better alternative 
was suggested by Jenny et al. (2006) and developed extensively by 
Lunati and Jenny (2006). Instead of computing 9 primal bases in 2D, and 
27 in 3D, it is possible to compute only one correction function per pri-
mary grid Ωi

p, which is designed to account for any non-homogeneous 
terms arising from the presence of complex physics or the lineariza-
tion of nonlinear equations. Correction functions (much like ψ j) are 
computed by solving a pure-Neumann problem on Ωi

p that automati-
cally ensures u is conservative on the fine grid. The only drawback 
presented by corrections functions, compared to primal bases, is that 
they must be recomputed every time step. Even so, the ability to compute 
them in parallel and the increased flexibility enabled by them to simu-
late complex physics has made correction functions the default strategy 
in MsFV. 

The above description of MsFV produces an efficient and accurate 
approximation to Eq. (19a). But the algorithm lacks the ability to esti-
mate or control errors. Hajibeygi et al. (2008) proposed a convenient 
remedy. Because the only source of error in MsFV comes from the 
assumed BCs (like Eq. (24)) for the dual bases, one can iteratively 
improve such BCs. The idea is to use the solution from the previous 
iteration to improve the BCs in the next iteration. But instead of modi-
fying the BCs of the dual bases directly, which would be expensive 
because all four φi per dual grid would have to be recomputed, Hajibeygi 
et al. (2008) modified the BCs of the correction functions thereby 
requiring only one calculation per primary grid. The improved BCs are 
obtained by using a so-called “smoother” (or fine-grid preconditioner), 
such as incomplete LU or line relaxation, to attenuate high-frequency (or 
fine-grid) errors across iterations. Intuitively, a smoother can be thought 
of as solving a diffusion equation for the fine-scale error in p (Hajibeygi 
et al., 2008), which quickly dissipates the fluctuations of this error on 
the fine grid but not the coarse grid. The foregoing iterative strategy has 
equipped MsFV with the ability to assign confidence intervals to pre-
dictions and to control them if desired. 

We conclude by describing a recent algebraic interpretation of MsFV 
(Zhou and Tchelepi, 2008; Lunati and Lee, 2009) that has rendered its 
implementation within existing reservoir simulators non-intrusive. 
Suppose Eq. (19a) is discretized over the fine grid on Ω (Fig. 8a), 
resulting in the following global linear system 

Ap = b (30)  

Let Nf and Nc be the total number of fine grids and coarse grids in Ω, 
respectively. The coefficient matrix A is Nf×Nf and the column vectors b 
and p are both Nf×1. The first step is to construct a prolongation matrix, 
P, by assembling the discrete forms of the dual bases, φi, into the col-
umns of P. The result is a Nf×Nc matrix with the property that if P left- 
multiplies the Nc×1 vector pc, containing the coarse-scale pressure un-
knowns, it yields an approximation to the Nf×1 vector p 

p = Ppc (31)  

In other words, P is the algebraic operator that downscales pc into p. The 
second step is to construct a restriction matrix, R, which does the exact 
opposite of P. Namely, it upscales p into pc. In MsFV, R is a Nc×Nf matrix 
with only zeros and ones as entries. Left-multiplying a Nf×1 vector by R 
has the effect of summing up all the rows of that vector associated with 
the fine grids comprising each individual coarse grid. To obtain the 
coarse-scale problem, Eq. (30) is first left-multiplied by R, which is 
equivalent to imposing mass conservation on each coarse grid similar to 
Eq. (28). Next, Eq. (31) is substituted for p, resulting in 

Acpc = bc s.t. Ac = RAP bc = Rb (32)  

where Ac is a Nc×Nc matrix with entries identical to Tij in Eq. (29). Note 
that Ac is much smaller than A. Solving Eq. (32) yields the coarse-scale 
unknowns pc, and substituting pc into Eq. (31) yields the fine-scale so-
lution p. If only the former is desired, one may discard P and R right after 
Ac and bc are assembled via Eq. (32). The above algebraic formulation is 
equivalent to the geometric description of MsFV presented earlier and 
can be used as a coarse-grid preconditioner in iterative solvers like 
GMRES. To improve convergence, and to estimate and control errors, 
one may pair this coarse-grid preconditioner with a fine-grid precondi-
tioner (or smoother) like iLU. The pairing allows both high- and low- 
frequency errors to be reduced simultaneously. The above algebraic 
formulation of MsFV shares similarities with multigrid methods (Saad, 
2003). 

3.4.1.4. Multiscale mortar finite element (MoMsFE). We describe 
MoMsFE (Arbogast et al., 2007) with reference to Fig. 9a-b. The global 
domain Ω is divided into a number of coarse grids (thick lines), or sub-
domains, which themselves contain a number of fine grids (thin lines). 
Let Γij denote the interface between two adjacent subdomains Ωi

c and 
Ωj

c, and Γ = ∪ijΓij the union of all interfaces between the subdomains. 
The whole idea behind MoMsFE is to compute the pressure field p on Γ. 
Because if p on Γ is known, then Eq. (19a) can be solved on each sub-
domain, as its BCs would be known. This, in turn, would yield p over Ω. 
So the main question is: how do we compute p on Γ? In MoMsFE, the 
interface Γ is discretized by placing finite element nodes (black dots in 
Fig. 9a) on it. Associated with each node is a scalar coarse-scale pressure 
unknown pi

c and a finite element basis function μi defined strictly on Γ. A 
common choice for μi is the hat function, as depicted for nodes i (red) 
and j (green) in Fig. 9b. In 2D, μi is a 1D function (like Fig. 9b), and in 3D, 
it is a 2D function (not shown). With such a discretization of Γ, the 
pressure field on Γ can expressed as 

p|Γ =
∑

i
pc

i μi (33)  

where one formally refers to μi as a mortar basis function (Bernardi et al., 
1994; Arbogast et al., 2000) and to pi

c as its corresponding Lagrange 
multiplier. The main benefit of Eq. (33) is that it transforms our original 
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problem of “computing an unknown function p over Γ′′ to the much 
simpler problem of “computing a handful of scalars pi

c over Γ′′. In short, 
if we know pi

c, we have solved the problem. 
We begin by first constructing a set of pressure bases on each sub-

domain (related to the flux bases of Ganis and Yotov (2009)). Let us 
consider the coarse grid Ωk

c in Fig. 9b. The idea is to compute a set of 
basis functions on Ωk

c, one for each of the 12 nodes along ∂Ωc
k, such that 

if all the pi
c corresponding to these nodes are known, we can reconstruct 

the fine-scale p inside Ωk
c by superposing the bases. We denote the 

pressure basis associated with Ωk
c and the interface node i (red in 

Fig. 9b) by φki. To compute φki, we first reduce Eq. (33) to p|Γ = μi, by 
setting the multiplier of node i to one and the rest to zero, and then use it 
as BCs to solve Eq. (19a) on Ωk

c. The solution is the fine-scale pressure 
basis φki. The process is repeated for all i and k. Intuitively, the pressure 
basis φki captures the effect of the coarse-scale pressure pi

c over Γ on the 
fine-scale pressure p over Ωk

c. Put differently, pressure bases allow pi
c to 

be downscaled onto the fine grid comprising Ωk
c. To compute pi

c, we 
impose 
∫

Γ

Eu(pc) Fμj dΓ = 0 (34)  

on Γ, which is a statement of mass conservation across subdomain in-
terfaces. Eq. (34) says that the jump in flux, ⟦u⟧, across Γ must be zero in 
a “weak” sense. Note that Eq. (34) must hold for all j. Because ⟦u⟧ de-
pends on the BCs imposed on each coarse grid, and such BCs depend on 
pi

c according to Eq. (33), ⟦u⟧ is a function of pi
c. In Eq. (34), we highlight 

this dependence with the notation ⟦u(pc)⟧. A crucial observation is that 
the dependence between ⟦u⟧ and pi

c is linear, because both Eq. (19a) and 
Eq. (33) are linear. We can therefore write 

EuF =
∑

i
pc

i ωi (35)  

where 

ωi =
∑

k
nΓ⋅( − λ∇φki)

⃒
⃒
⃒
⃒
⃒

Γ

(36)  

The vector nΓ is the unit normal on Γ. The weight ωi in Eq. (35) repre-
sents the contributions of φki for all k to the flux jump ⟦u⟧ on Γ. Notice ωi 
is a fine-scale function defined on Γ. Substituting Eq. (35) and Eq. (36) 
into Eq. (34) yields a linear system in terms of pi

c 

∑

i
pc

i

∑

k

⎛

⎝
∫

Γ

nΓ⋅( − λ∇φki)

⃒
⃒
⃒
⃒
⃒
⃒

Γ

μj dΓ

⎞

⎠

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
Mk

ij

=
∑

i
pc

i

⎛

⎝
∫

Γ

ωiμj dΓ

⎞

⎠

⏟̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅⏟
Mij

= 0 (37)  

Eq. (37) is the coarse-scale problem, and solving it completes the algo-
rithm for MoMsFE. 

The coefficients Mij are the entries of a small Nc×Nc matrix, where Nc 

denotes the number of coarse-scale unknowns on Γ (dots in Fig. 9a). The 
parameter Mij is an aggregate of subdomain contributions Mij

k. We call 
the matrix Mk, whose entries consist of Mij

k, the flux matrix (same as flux 
bases in Ganis and Yotov (2009)). Mk is an upscaled representation of Eq. 
(19a) on Ωk

c. In Section 3.4.4, we elaborate more on flux matrices and 
discuss their properties. Here, we only mention that while Eq. (37) 
suggests Mk is a Nc×Nc matrix, it is sparse and contains many zero en-
tries. If only the non-zero rows and columns are retained, Mk reduces to 
a 12 × 12 matrix for the subdomain Ωk

c in Fig. 9b; because Ωk
c has 12 

nodes on its external boundary. The calculation of Mij (or Mij
k) requires 

only the mortar basis μj and the pressure basis φki, both of which can be, 
respectively, selected or precomputed. Notice the coarse-scale param-
eter Mij is similar to the coarse-scale stiffness Kij in MsFE (Eq. (23)) and 
the coarse-scale transmissibility Tij in MsFV (Eq. (29)). MoMsFE can thus 
be viewed as a form of numerical upscaling because the fine-grid pres-
sure bases φki can be discarded after all Mij are computed. 

We conclude with a few remarks. MoMsFE is able to estimate and 
control approximation errors by increasing either the order or the 
number of mortar basis functions μi per coarse-grid edge (Arbogast et al., 
2007). For example, we could use 8 instead of 4 nodes along the edges of 
each subdomain in Fig. 9b, and we could use quadratics instead of linear 
hat functions. In MoMsFE, the fine grids inside two neighboring sub-
domains need not match (or conform) along their shared interface. This 
is very attractive because each subdomain can be discretized indepen-
dently using different fine grids. In MoMsFE, the coarse-scale problem, 
Eq. (37), corresponds to a mass balance across subdomain interfaces, 
whereas in MsFV the coarse-scale problem, Eq. (28), corresponds to a 
mass balance over subdomain volumes. An interface balance is usually 
much easier to formulate than a volume balance, especially for 
nonlinear problems, because the latter requires careful averaging of the 
fine-scale equations to ensure consistency between the fine- and coarse- 
scale problems (see Lunati and Jenny, 2006). No such requirement exists 
in MoMsFE. One drawback of MoMsFE is that the fine-scale velocity u is 
only “weakly” conservative across Γ. Only the integral of u over the 
support of each mortar basis is conserved, but not its pointwise values. 
The smaller the support, the more locally is mass conserved. Piecewise 
discontinuous polynomial mortars offer the most flexibility in localizing 
mass conservation along Γ. An alternative to MoMsFE that ensures 
pointwise mass conservation on Γ is the enhanced velocity method 
(Wheeler et al., 2002; Thomas and Wheeler, 2011; Ganis et al., 2019). 

3.4.2. Pore scale 
At the pore scale, the equivalent of the Darcy-scale Eq. (19) for two- 

phase flow is, in its simplest form, the following (Popinet, 2018) 

Fig. 9. (a–b) Schematic of MoMsFE and the 
construction of a flux matrix. (a) A global 
domain divided into coarse grids (thick lines) 
and fine grids (thin lines). Coarse-scale un-
knowns are defined at nodes (dots) along coarse- 
grid interfaces. (b) Mortar bases (here hat 
functions) are defined on these interfaces. The 
mortar pressure basis φki corresponding to the 
coarse grid Ωk

c is obtained by solving Eq. (19a) 
on Ωk

c subject to the BC that p = μi on ∂Ωc
k. (c) 

Construction of a general pressure basis. The 
subdomain Ω has three open boundaries, Γ1-3 
(red), and one sealed boundary, Γw (dashed). A 
general pressure basis, for the Darcy-scale flow 
Eq. (19a) or pore-scale Stokes Eq. (49), is ob-
tained by setting the pressure at Γ1 to p = 1, and 

at Γ2 and Γ3 to p = 0. Two more pressure bases are obtained by setting p = 1 at Γ2 and another time at Γ3. For each pressure basis, the flowrates at Γ1-3 are calculated 
and assembled into the columns of a flux matrix M (Section 3.4.4).   
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∇⋅u = 0 (38a) 
μΔu − ∇p+ κσ δs = 0 (38b) 
∂tα+∇⋅(αu) = 0 (38c)  

where 

κδs = ∇⋅(∇α/‖∇α‖ )∇α (38d) 

Eqs. (38a) and (38b) denote mass and momentum conservation, 
respectively. Eq. (38c) describes the evolution of each phase with time. 
Eq. (38) assumes that the two phases are incompressible and have equal 
viscosity and density. The variables u, p, μ, σ, and κ denote velocity, 
pressure, viscosity, surface tension, and interfacial curvature, respec-
tively. The surface Dirac delta, δs, ensures that capillary forces are 
localized at the fluid-fluid interface (Popinet, 2018). The scalar indicator 
function, α, takes the value 1 in one of the phases and 0 in the other. 
Across the fluid-fluid interface, α varies smoothly between 0 and 1. The 
field variable α, much like the saturation Sw in Eq. (19b), specifies how 
the two phases are spatially distributed at any given moment in time. 
Capillary forces are computed by inserting α into Eq. (38d). To solve Eq. 
(38) numerically, a common strategy is to first solve Eq. (38a-b) for u 
and p, using α from the previous time step, and then solve Eq. (38c) to 
obtain α at the next time step. By analogy with Section 3.4.1, we call Eq. 
(38a-b) the flow equation and Eq. (38c) the transport equation. As in 
Section 3.4.1, solving the flow Eq. (38a-b) is computationally much 
more expensive than solving the transport Eq. (38c). Multiscale methods 
have therefore been developed to accelerate the solution of the flow Eq. 
(38a-b). In the following, we review several of them. The fine-scale u 
obtained from these methods must be made conservative (or divergence- 
free) so that Eq. (38c) can be solved over the fine grid. 

3.4.2.1. Straightforward extensions. Several extensions of the multiscale 
methods discussed in Sections 3.4.1.3–4 to the pore scale have been 
proposed. Tomin & Lunati (Tomin and Lunati, 2013) adapted MsFV to 
solve single-phase flow (Eq. (38a-b) without the κσδs term) and two- 
phase flow (a more general version of Eq. (38)) at the pore scale. The 
overall workflow is very similar to that of Section 3.4.1.3, which we 
briefly outline here. A pore-scale domain is divided into a number of 
rectangular primary, Ωi

p, and dual, Ωi
d, coarse grids. Four basis func-

tions are constructed over each dual grid by solving 

∇⋅ψij = 0 (39a) 
μΔψij − ∇φij = 0 (39b)  

on Ωi
d for j ∈ {1,2,3,4}. The index j enumerates the dual grid corners. Eq. 

(39) differs from the Darcy-scale Eq. (22) in that the dual bases here 
consist of both a pressure, φij, and a velocity, ψ ij, component (not just 
pressure). Eq. (39) is solved subject to linearly varying pressure BCs 
along the edges of Ωi

d with the corner pressures specified as in Fig. 8d. 
The BCs for velocity consist of setting the normal gradient of ψ ij on ∂Ωi

d 

to zero and imposing no-slip conditions on the fluid-solid interface. Note 
that Eq. (39) does not include the capillary term, κσδs, and corresponds 
therefore to single-phase flow. To capture the effect of capillarity, a 
correction function satisfying 

∇⋅ψ̃ i = 0 (40a) 
μΔ ψ̃ i − ∇φ̃i + κσ δs = 0 (40b)  

is constructed on Ωi
d. The correction function consists of a pressure, φ̃i, 

and a velocity, ψ̃ i, component. Eq. (40) is subjected to the same kind of 
BCs as Eq. (39) except that they are all homogenous (i.e., equal to zero). 
Note that Eq. (39) must be solved only once per dual grid, whereas Eq. 
(40) must be solved every time step provided κσδs is non-zero over the 
dual grid (i.e., the dual grid is occupied by two phases). Lastly, the fine- 
scale p and u are reconstructed by superposition 

p =
∑

j

∑

i
pc

ijφij +
∑

i
φ̃i (41a) 

u =
∑

j

∑

i
pc

ijψij +
∑

i
ψ̃ i (41b)  

Eq. (41) assumes that the basis and correction functions are extended by 
zero outside of the dual grids they are defined on. To compute the 
coarse-scale pressure unknowns, pij

c, a coarse-scale problem is formu-
lated by integrating the fine-scale Eq. (38a) over each primary grid Ωi

p. 
Tomin and Lunati (2013) then postulated that the net flux crossing ∂Ωi

p 

is a linear function of the difference between pij
c and its neighboring 

coarse-scale pressure values; we call this the Darcy postulate. Inserting 
the postulate into the integrated equation yields a linear system in terms 
of pij

c. As in Section 3.4.1.3, the u obtained from Eq. (41b) is not con-
servative over the fine grid and cannot be used to solve Eq. (38c). To 
remedy this, the u and p from Eq. (41) are used as BCs for a pure- 
Neumann problem (not shown) on each primary grid Ωi

p. Solving this 
problem yields a conservative u. 

The accuracy of the above MsFV extension relies on the degree of 
scale separation between the pore-scale characteristic length, ε, and the 
coarse-grid size, h. If ε/h ~ 1, the scheme incurs large errors (Tomin and 
Lunati, 2013) because the Darcy postulate is invalid. This is quite 
reminiscent of the resonance effect in MsFE (Hou and Wu, 1997) (Sec-
tion 3.4.1.1). The above extension of MsFV was later recast as an alge-
braic solver (Tomin and Lunati, 2015) and several adaptivity criteria 
were explored (Tomin and Lunati, 2016b) to increase its computational 
efficiency. A particularly important criterion was to switch to a Darcy- 
scale description when pore-scale changes inside a primary grid 
became negligible. In drainage and imbibition problems, the criterion 
allows one to localize computations to the displacement front. Its 
drawback, however, is that once the switch to the Darcy scale is made, 
some of the fine-scale information are permanently lost, which may be 
important in, for example, cyclic flows (drainage followed by 
imbibition). 

A second extension of MsFV to the pore scale was proposed by 
Khayrat and Jenny (2017) and Khayrat et al. (2018), where the fine- 
scale solver was a pore-network model (PNM). The PNM, a graph- 
based method that we explain later, was an adaptation of existing 
methods (Joekar-Niasar et al., 2010; Thompson, 2002) that crudely 
approximates Eq. (38). The MsFV extension was shown to accelerate the 
solution of the flow equation by a factor of 2–10, providing a means to 
probe samples that are much larger than possible with single-scale PNM. 
The overall workflow is nearly identical to that of Section 3.4.1.3, with 
minor differences specific to the PNM solver. 

Extensions of MoMsFE to the pore scale have also been reported by 
Balhoff et al. (2008), Sun et al. (2012a, 2012b), Mehmani and Balhoff 
(2014) and Mehmani et al. (2012). In these works, the fine-scale solver 
was a single-phase PNM (two-phase flow was not explored). The overall 
workflow is very similar to the Darcy scale MoMsFE discussed in Section 
3.4.1.4, except that the mortar and pressure bases are defined over 
discrete domains (because PNMs are graphs). The discrete nature of the 
pore space introduces specific challenges to defining mortar bases, μi in 
Eq. (33). For example, mortar bases may have supports that lie entirely 
in the solid phase. Another difficulty is to ensure pointwise flux con-
servation over subdomain interfaces Γ. Standard polynomial mortars (e. 
g., hat functions) produce fine-scale velocity fields that are not pointwise 
conservative. Mehmani and Balhoff (2014) and Mehmani et al. (2012) 
proposed specially designed piecewise constant mortar bases that 
rendered the velocity conservative across Γ, and thus useful for simu-
lating solute transport. Despite this advantage, piecewise constant 
mortars can produce artifacts in simulating solute transport if the flow 
direction is tangent to Γ (Mehmani, 2014). Piecewise linear mortars 
would circumvent this issue, but remain underexplored (Mehmani, 
2014). Similar MoMsFE extensions have been reported to model biofilm 
growth (Tang et al., 2015) and fuel cells (Baber et al., 2016). 
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3.4.2.2. Pore-level multiscale method (PLMM). A multiscale method 
specifically designed for pore-scale problems was recently proposed by 
Mehmani and Tchelepi (2018, 2019). The pore-level multiscale method 
(PLMM) is not an extension of the Darcy-scale methods reviewed in 
Section 3.4.1 but inspired by several ideas therein. Here, we describe 
PLMM with reference to Fig. 10a-d. Consider the pore-scale domain in 
Fig. 10a, where the black color denotes the solid phase. In PLMM, the 
void space, Ω, is decomposed into a number of coarse grids, Ωi

c, by using 
a well-known image-analysis algorithm called watershed segmentation 
(Beucher and Lantuejoul, 1979). A key property of watershed segmen-
tation is that each coarse grid, Ωi

c, corresponds to a local enlargement of 
Ω, called a pore. And the interface, Γij, between two adjacent coarse 
grids, Ωi

c and Ωj
c, corresponds to a local constriction of Ω, called a throat. 

In PLMM, basis functions are constructed on each coarse grid as 
follows. Consider Ωi

c in Fig. 10b, which shares five interfaces (red lines), 
Γij, with its neighboring coarse grids Ωj

c, where j ∈ {1,2,3,4,5}. Eq. (39) 
is solved on Ωi

c to obtain the pressure, φij, and velocity, ψ ij, basis func-
tions, respectively. The BCs imposed at Γik, for k ∈ {1,2,3,4,5}, are φij =

δjk and ∂nψ ij = 0, where δjk is the Kronecker delta and ∂n is the derivative 
normal to Γik. The BC at the fluid-solid interface is the no-slip velocity 
condition. Fig. 10d illustrates all five of the basis functions on Ωi

c. Red 
dots mark interfaces, Γik, where the pressure basis, φij, is equal to one, 
and gray dots mark interfaces, where φij is equal to zero. Notice that, 
similar to Section 3.4.2.1, φij and ψ ij are local solutions to the single- 
phase Stokes equation. To account for capillarity, correction functions 
for pressure, φ̃i, and velocity, ψ̃ i, must be constructed by solving Eq. (40) 
on Ωi

c subject to homogeneous BCs (same as Section 3.4.2.1). Once all 
basis and correction functions are computed, the fine-scale velocity, u, 
and pressure, p, can be reconstructed using Eq. (41). The coarse-scale 
unknowns, pij

c in Eq. (41), correspond to scalar pressure values that 
are constant along each Γij. Fig. 10a illustrates the spatial arrangement 
of pij

c by the green dots. To compute pij
c, a coarse-scale problem is 

formulated by imposing mass conservation across Γij 
∫

Γij

Eu(pc) FdΓ = 0 (42)  

where ⟦u⟧ is the jump in flux across Γij. In PLMM, similar to Section 
3.4.1.4, ⟦u⟧ is a linear function of pij

c (hence the notation ⟦u(pc)⟧). 
Therefore, Eq. (42) can be written as a linear system in terms of pij

c. 

Solving this system yields pij
c, which is then used to reconstruct u from 

Eq. (41). This u, however, is not pointwise conservative (or continuous) 
across Γij. The reason is that Eq. (42) imposes mass conservation only in 
a “weak” sense. To remedy this shortcoming, u is modified by solving a 
local problem over a small region containing Γij. Such regions are called 
throat grids (not shown in Fig. 10) and constitute a small fraction of Ω; 
typically <10%. The modification renders u conservative and thus 
suitable for solving the transport Eq. (38c). Throat grids are also used to 
iteratively improve PLMM predictions and to estimate and control 
errors. 

PLMM bears some similarities with MoMsFE, MsFV, and two-level 
Schwarz methods (Dolean et al., 2015). Like MoMsFE, the coarse-scale 
problem is formulated as an interface balance equation (compare Eq. 
(42) to Eq. (34)), as opposed to a volume balance equation in MsFV. 
Interface conditions are more robust and easier to implement, because 
their mathematical form remains unaltered when applied to flow 
problems more complicated than Eq. (38a-b) (e.g., nonlinear 
compressible flow; see Guo et al., 2019). In MsFV, by contrast, one must 
exercise care to ensure consistency between fine-scale and coarse-scale 
equations, which may require a priori approximations about the latter 
(Lunati and Jenny, 2006). Like two-level Schwarz methods (Dolean 
et al., 2015), PLMM uses an overlapping region around Γij to iterate until 
convergence. But unlike two-level Schwarz, and like MsFV, each itera-
tion involves the calculation of local correction functions that are also 
used to render u divergence-free. 

In PLMM, the basis functions, φij and ψ ij, are computed only once per 
simulation provided that both phases have a constant density and vis-
cosity. The correction functions, φ̃i and ψ̃ i, are recomputed every time 
step. Careful inspection of Eq. (40), however, reveals that φ̃i and ψ̃ i are 
only non-zero when Ωi

c is occupied by two phases. Fine-scale compu-
tations can therefore be confined to the fluid-fluid interface. In 
displacement processes, this means coarse grids ahead and behind the 
displacement front are exempt from fine-scale computations. Only 
coarse grids that lie at the front require φ̃i and ψ̃ i to be computed. A 
similar adaptivity criterion was used in the first MsFV extension (Tomin 
and Lunati, 2013; Tomin and Lunati, 2016b) discussed in Section 
3.4.2.1. The key difference here is that in PLMM, coarse grids corre-
spond to physical pores, whereas in MsFV, coarse grids are rectangular 
boxes containing tens to hundreds of pores. Because pore-filling events 
(e.g., Haines jump, snap-off) occur at the scale of individual pores in a 

Fig. 10. Schematic of PLMM and PNM. (a) Coarse 
grids are the randomly colored regions. Green dots 
show the placement of coarse-scale unknowns at 
coarse-grid interfaces. (b) The coarse grid Ωi

c shares 
five interfaces (red) with its neighbors. (d) The BCs 
used to build local bases on Ωi

c are informed by how 
streamlines (green) meander near each interface Γij 
(red line), i.e., they are optimal. (e) Pressure and 
velocity bases (B1 to B5) are obtained by setting the 
pressure equal to one and zero at the interfaces 
marked by red and gray dots, respectively. The ve-
locity BC is set to have a zero normal gradient across 
all the interfaces. (f) PNM interpreted as an upscaling 
method. In PNM, coarse-scale unknowns are placed 
at the center of each coarse grid (or pore). The fine- 
scale pressure is represented by a piecewise con-
stant function that is constant over each pore’s vol-
ume. Two basis functions are calculated for each 
throat by solving the Stokes equation. Red and gray 
dots denote one and zero pressure BCs, respectively. 
The construction of bases in PNM is equivalent to 
computing throat conductivities.   
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porous medium, it is far easier to define adaptivity criteria in PLMM. The 
adaptivity criteria in MsFV (Tomin and Lunati, 2016b) are expressed in 
terms of integral measures such as changes in average phase saturation. 
But saturation is not a good measure, because the same value may 
correspond to different phase distributions at the pore scale. In PLMM, 
the adaptivity criterion requires a simple check to see whether Ωi

c is 
occupied by one or two phases. Even more efficient criteria have been 
proposed (Mehmani and Tchelepi, 2019). 

Differences in the sizes and shapes of coarse grids in PLMM versus 
MsFV (Tomin and Lunati, 2013) have another implication. Unlike MsFV, 
the BCs used to construct PLMM basis functions are informed by the 
local pore-scale geometry. Fig. 10c depicts an interface Γij between two 
adjacent coarse grids. The flow streamlines are drawn in green color. 
PLMM assumes that the fine-scale pressure along Γij is approximately 
constant and equal to pij

c. The gradient of velocity normal to Γij is also 
assumed to be zero. Since watershed segmentation ensures Γij always 
coincides with a local constriction, streamlines are bound to exhibit a 
converging-diverging pattern near Γij. It is therefore possible to show 
(Mehmani and Tchelepi, 2018) that the optimal BCs on Γij are the same 
as those imposed by PLMM. This has been confirmed by highly accurate 
predictions (error < 1%) reported for different pore-scale geometries 
(Mehmani and Tchelepi, 2018). By comparison, MsFV imposes linearly 
varying pressure and zero-gradient velocity BCs over box-shaped coarse 
grids, regardless of what the underlying pore-scale geometry looks like. 
This leads to less accurate predictions. 

In PLMM, convergence to the fine-scale solution is rapid. The main 
reason is that instead of using a generic smoother, like incomplete LU, 
local problems are solved near Γij (or on throat grids) to obtain more 
accurate BCs on Ωi

c. Most of the error reduction occurs within the first 
iteration, often by a factor of 10–100 (Mehmani and Tchelepi, 2018; 
Mehmani and Tchelepi, 2019). For most subsurface applications, either 
zero or one iteration is sufficient to obtain an accurate solution. Gener-
alizations of PLMM to compressible flow (Guo et al., 2019) and geo-
mechanics (Mehmani et al., 2021) have also been reported. 

3.4.2.3. Pore networks: upscaling or multiscale?. Pore-network models 
(PNM) are approximate methods for solving flow and transport prob-
lems at the pore scale. A PNM represents the complex microstructure of a 
porous medium with a graph consisting of nodes and links. Fig. 10e 
shows an example of a pore network. Green dots are the nodes and black 
lines are the links. Each node lies at the center of a pore, represented in 
Fig. 10e by the colored regions. Links connect the nodes across the in-
terfaces (or throats) between the pores. All the information about a pore, 
such as its volume and surface area, are assigned to the corresponding 
node. And all the information about a throat, such as its inscribed radius 
and capillary entry pressure, are assigned to the corresponding link. No 
geometric details of either the pore or the throat are resolved. Only their 
“upscaled” impact on the physics is captured. The graph is used to 
simulate flow and transport by solving equations that roughly approxi-
mate Eq.38. The simplest example corresponds to single-phase flow, in 
which mass balance is imposed at each node i 

∑Ni

j=1
gij
(
pj − pi

)
= 0 (43) 

The subscript ij denotes the link between nodes i and j. In Eq. (43), pi 
and pj are the nodal pressures; gij is the hydraulic conductivity of link ij; 
and Ni is the number of links connected to node i. Eq. (43) equates the 
sum of the flowrates, qij = gij (pj – pi), over all the links connected to node 
i to zero. The fluid is assumed to be incompressible and Newtonian. 
Implicit to Eq. (43) are two important assumptions: (1) gij captures the 
hydraulic resistance of the microstructure between nodes i and j, and (2) 
the pressure field inside each pore, colored regions in Fig. 10e, is 
approximately constant and can therefore be represented by a scalar, pi. 
To the initiated reader, the formulation of Eq. (43) is identical to the 
two-point flux approximation (TPFA) scheme in finite volume. 

In the 1950–80s, PNMs were used primarily as conceptual tools to 
provide qualitative understanding of pore-scale physics. Geometric de-
tails of the pore space were difficult to measure, and gij in Eq. (43) was 
often determined based on intuitive, yet ad hoc, assumptions. From the 
1990s onward, X-ray μ-CT imaging provided rich descriptions of 
microstructural details of porous media. As a result, various PNM al-
gorithms (Lindquist et al., 1996; Sheppard et al., 2006; Dong and Blunt, 
2009; Silin and Patzek, 2006) were developed to construct realistic 
graphs with more accurate parameters, like gij (Prodanović et al., 2007). 
To compute gij in a modern PNM, the Stokes equation is solved on the 
actual void geometry representing the ij link, as shown in Fig. 10f. A unit 
pressure difference is imposed across the two ends of the link and the 
calculated flowrate through the inlet (or outlet) equals gij. Similar uses of 
direct numerical simulation (DNS) to compute network parameters have 
been proposed for solute transport and two-phase flow (Mehmani and 
Tchelepi, 2017; Raeini et al., 2018). 

Using the terminology of this section, modern PNMs require some 
amount of local fine-scale (DNS) computations to parameterize a global 
coarse-scale equation, e.g., gij in Eq. (43). The calculation of gij is iden-
tical to constructing a local basis function. For the throat shown in 
Fig. 10f, two bases can be built by setting the pressure equal to one at the 
boundaries marked by red nodes and to zero at the boundaries marked 
by gray nodes. However, the two bases are not independent, because 
their sum equals one. Using either basis to compute the flowrate through 
the inlet (or outlet) of the throat yields gij. This procedure resembles 
numerical upscaling, but not multiscale computing. Because similar to 
upscaling, the form of the coarse-scale Eq. (43) is first assumed and then 
parameterized. And unlike multiscale computing, the ability to down-
scale fine-scale (or sub-pore) details is absent. Modern PNMs can 
therefore be considered as a form of numerical upscaling, with all the 
pros and cons discussed in Section 3.3 attached. 

In Section 3.4.2.2, we presented PLMM as a multiscale method, but 
another interpretation of it is: a more accurate alternative to PNM. 
Despite the wide-reaching success of PNM in improving our under-
standing of various pore-scale processes, it has four major drawbacks: 
(1) it yields poor predictions except in idealized geometries and specific 
flow regimes5; (2) the predictions are not bound by confidence intervals 
and the ability to control errors is absent; (3) the approximation of a 
given microstructure by a pore network is often ambiguous and non- 
unique, but has a large impact on predictions; and (4) the solutions 
represent averages of pressure and velocity within pores and throats with 
no option to recover sub-pore details. Such details are known to be 
important in, for example, advection-dominated solute transport 
(Mehmani and Tchelepi, 2017; Mehmani et al., 2014; Mehmani and 
Balhoff, 2015b). Multiscale methods that use PNM (Mehmani and 
Balhoff, 2014; Balhoff et al., 2008; Mehmani et al., 2012; Khayrat and 
Jenny, 2017; Khayrat et al., 2018) as their fine-grid solver (to construct 
bases) inherit all of these limitations. PLMM, by contrast, is beleaguered 
by none. 

While not reported here, it is possible to recast PNM as a multiscale 
method using the MsFV formalism. An outline of such a formulation was 
presented by Mehmani and Tchelepi (2018), whereby local basis func-
tions are systematically constructed and a coarse-scale problem is 
formulated by integrating fine-scale equations. Compared to PLMM, 
however, the approach is expected to be less accurate because the bases 
are obtained using less accurate BCs (Section 3.4.2.2). Even so, the 
formulation would place PNM on solid theoretical footing and improve 
its predictions. Errors would be quantifiable and controllable, and the 

5 PNM predictions are reliable in only a handful of problems: single-phase 
flow, quasi-static drainage, and diffusive transport. The first and third are 
characterized by pressure and concentration fields that are smooth, and thus 
easy to approximate with piecewise constants. Outside these problems, favor-
able results are often reported for averaged quantities such as relative perme-
ability or capillary pressure, which obscure local but potentially large errors. 
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ability to downscale sub-pore details available if desired. 

3.4.3. Multiscale vs. upscaling: to downscale or not? 
In Sections 3.3–4, we outlined the differences between numerical 

upscaling and multiscale methods. The most important were the ability 
of multiscale methods (1) to estimate and control errors and (2) to 
downscale fine-scale details. Almost all upscaling methods, including 
PNM at the pore scale, lack the first capability (Section 3.3) and only 
some possess the second (Chen et al., 2003; Gautier et al., 1999). Here, 
we focus on downscaling and discuss whether it is necessary for 
obtaining reliable predictions of subsurface processes. The question is 
important because both the cost and accuracy of simulations depend on 
the amount of fine-scale details resolved. 

In all the multiscale methods discussed in Sections 3.4.1–2, down-
scaling is the last step of the algorithm. Namely, a fine-scale solution is 
reconstructed by superposing local basis functions weighted by the so-
lution of a coarse-scale problem. Of particular interest is the fine-scale 
velocity field, which must be conservative (or divergence-free) to 
solve a transport equation on the fine grid. In subsurface applications, 
coarse-scale predictions are often more desirable than fine-scale pre-
dictions. The reason, aside from lower computational cost, is that en-
gineering decisions require information either at a few select locations, 
such as flowrates at wells, or in the form of averages over larger regions, 
such as permeabilities of meter-scale cores. Both upscaling and multi-
scale methods are capable of providing such coarse-scale information, 
but the latter also presents the option to downscale. So the question is 
whether this extra downscaling step is important for obtaining accurate 
coarse-scale predictions. As it turns out, the answer depends on the 
problem and our tolerance for error. In the following, we assume that we 
have no desire to estimate or control prediction errors, which is a feature 
generally absent in numerical upscaling and one that invariably de-
mands downscaling in multiscale methods. 

In single-phase flow, downscaling is redundant if all we want is an 
approximate coarse-scale solution to an elliptic (or time-independent) 
problem without needing to use the solution to solve a subsequent 
transport problem. Quasi-static solid mechanics, in which a sequence of 
elliptic problems are solved to capture multiple loading steps, also falls 
under this category (Castelletto et al., 2017). Recall that all multiscale 
methods reduce their fine-scale basis functions into some kind of coarse- 
scale parameter such as the coarse-scale stiffness in MsFE, the coarse- 
scale transmissibility in MsFV, and the flux matrix in MoMsF (see Sec-
tion 3.4.1.4). As soon as these coarse-scale parameters are computed, the 
fine-scale bases can be discarded because the former is the only thing 
that is required to compute an approximate coarse-scale solution. Two- 
phase flow, by contrast, is time-dependent and consists of an elliptic 
pressure equation, Eq. (19a), and a hyperbolic transport equation, Eq. 
(19b). It is the precise character of the transport equation that dictates 
whether downscaling is necessary or not. In Section 3.4.1, we mentioned 
hyperbolic equations have solutions that exhibit localized features such 
as steep gradients. One example is a shock front formed by displacing 
one fluid by another inside a porous medium. Such features can only be 
resolved on the fine grid, requiring that some (localized) downscaling is 
performed. Now, if we were to add capillarity to Eq. (19b), then the 
transport equation would have a mixed character: part hyperbolic and 
part parabolic. If the parabolicity, or capillarity, dominates, then sharp 
shocks in saturation would give way to smooth and diffuse transition 
zones that may be resolvable on the coarse grid alone. If so, then 
downscaling would be redundant; notice this depends on the coarse-grid 
size. A similar argument holds for single-phase transport of a passive 
solute in groundwater. If advection dominates over diffusion, then the 
fine-scale details are important, at least in some parts of the domain, and 
must be downscaled. Else, one may simulate the physics entirely on the 
coarse grid. Pore-scale equations, Eq. (38), abide by the same rules. In 

single-phase Stokes flow, downscaling is redundant if all we want is to 
compute an approximate macroscopic permeability for a sample. But in 
two-phase flow and advection-dominated solute transport, downscaling 
is necessary due to the presence of menisci and sharp boundary layers 
(Tomin and Lunati, 2013; Mehmani and Tchelepi, 2018; Mehmani and 
Tchelepi, 2019; Mehmani and Tchelepi, 2017). 

What happens if we insist on solving a hyperbolic equation on a 
coarse grid that cannot resolve its dynamics, i.e., the problem requires 
downscaling but we ignore it? An example is if we discretize and solve 
the transport Eq. (19b) on the coarse grid. The practice is common in 
earlier numerical upscaling methods (e.g., not local-global; Chen et al., 
2003). While the task can be accomplished by both upscaling and 
multiscale methods, it is highly error prone and should be avoided. In 
the case of Eq. (19b), the result would be severe numerical dispersion of 
the saturation field and the distortion of simulated injection fronts or 
contaminant plumes (Salamon et al., 2006). The reason is that the ho-
mogenized form of a hyperbolic equation defined on the fine grid is not 
another hyperbolic equation defined on the coarse grid, but rather an 
integral equation containing convolutions; or very high-order de-
rivatives (E, 1992; Tartar, 1989; Mehmani and Balhoff, 2015b; Berko-
witz et al., 2016). The integrals, even local approximations to them 
(Efendiev and Durlofsky, 2003), require knowledge of the fine-scale 
solution. The implication: to accurately solve hyperbolic problems on 
a coarse grid, some form of downscaling is necessary. The good news is 
that the downscaling can be localized because the solutions of hyper-
bolic equations exhibit steep gradients on only small parts of the 
domain, e.g., shock fronts in fluid-fluid displacements (Jenny et al., 
2006; Mehmani and Tchelepi, 2019). 

The oft-cited assertion that the ultimate goal of multiscale methods, 
as opposed to numerical upscaling, is to obtain a fine-scale solution is 
therefore unjustified. Technical feasibility is not the issue, as both 
methods can produce coarse-scale predictions. The need to downscale is 
driven less by a desire to obtain a fine-scale solution and more by the 
underlying character of the governing equations. 

3.4.4. Flux matrix: a bridge between pore scale and Darcy scale 
We now outline a general and systematic approach for bridging be-

tween the pore scale and the Darcy scale. The proposed method is purely 
algorithmic and combines MoMsFE and PLMM within a nested hierar-
chical framework. It makes no assumptions about the form of the gov-
erning equations at the Darcy scale and does not require scale separation 
to hold. It also allows for both upscaling and downscaling to be per-
formed. The method revolves around the idea of a flux matrix, first 
encountered in Section 3.4.1.4 as Mk, which is an upscaled representa-
tion of the fine-scale equations over a subdomain (or coarse grid). Both 
MoMsFE and PLMM make use of flux matrices because their coarse-scale 
unknowns and corase-scale problems are, respectively, defined and 
formulated over subdomain interfaces (Figs. 9a and 10a). By itself, the 
idea of a flux matrix is not new (Ganis and Yotov, 2009; Mehmani and 
Tchelepi, 2018; Sun, 2012), as it has been separately developed at both 
the Darcy scale and the pore scale. But its use as a scale-bridge in the way 
outlined here is. In the following, we begin by introducing a more 
general description of a flux matrix for an arbitrary (pore- or Darcy- 
scale) subdomain and then discuss how this fits within the proposed 
scale translation framework. 

Consider the subdomain Ω in Fig. 9c, whose boundary ∂Ω consists of 
three open segments Γ = Γ1 U Γ2 U Γ3 (solid red) and one closed segment 
Γw (dashed black). For simplicity, let the fine-scale equation defined on 
Ω be the Darcy-scale flow equation, repeated here for convenience 

∇⋅(λ∇p) = 0 (44)  

The flux matrix associated with Ω is constructed as follows. Set the 
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pressure, p, equal to one at Γ1 and to zero at Γ2 and Γ3; as shown in 
Fig. 9c. Impose no-flow BCs at Γw. Solve Eq. (44) and compute the total 
flowrate crossing each open boundary via 

q1
i =

∫

Γi

u dΓ = −

∫

Γi

λ∇p dΓ ∀i ∈ {1, 2, 3} (45)  

In Eq. (45), qi
1 denotes the total flowrate at Γi obtained by solving Eq. 

(44) subject to p = 1 at Γ1 and p = 0 at Γ2 and Γ3. We next arrange all qi
1 

into the entries of a 3 × 1 column vector Q1 

Q1 =
[
q1

1 q1
2 q1

3

]T (46)  

The superscript T denotes transposition. We repeat the above steps by 
setting p = 1 at Γ2 and p = 0 at Γ1 and Γ3. We then solve Eq. (44) and use 
an equation similar to Eq. (45) to obtain qi

2 for i ∈ {1,2,3}. The 3 × 1 
column vector Q2 is obtained by arranging the qi

2 into its entries, as in 
Eq. (46). In much the same way, Q3 is computed by setting p = 1 at Γ3 
and p = 0 at Γ1 and Γ2, followed by repeating the foregoing steps. The 
flux matrix associated with Ω (Fig. 9c) is a 3 × 3 matrix M with Q1, Q2, 
and Q3 as its columns 

M =
[

Q1 ∣ Q2 ∣ Q3
]

(47) 

Note that each column of M is a condensed representation of a fine- 
scale solution of Eq. (44), which we called a pressure basis in Section 
3.4.1.4. Here, we have used the symbol p instead of φ to denote pressure 
bases, as it makes the exposition more intuitive. Note that if Ω in Fig. 9c 
consists of 3000 fine grids, then the coarsening (or upscaling) ratio 
achieved by M is equal to 1000, because its construction requires 3 
separate solutions of Eq. (44). The most important use of M is that it can 
relate arbitrary pressure values imposed on Γ1, Γ2, and Γ3 to corre-
sponding flowrates at these boundaries. To demonstrate, let P and Q in 
Eqs. (48a-b) denote 3 × 1 column vectors that contain the pressures, pi, 
and total flowrates, qi, at Γi for i ∈ {1,2,3}. Eq. (48c) then holds by 
superposition 

P = [ p1 p2 p3 ]
T (48a) 

Q = [ q1 q2 q3 ]
T (48b) 

Q = MP (48c)  

Namely, given any P, left-multiplication of it by M yields the corre-
sponding Q. No information regarding the details of the fine-scale 
equation or its discretization on Ω is required. We can generalize this 
further: if Ω has n open boundaries Γi (instead of 3 in Fig. 9c), then M 
would be an n×n matrix satisfying Eq. (48c). The “open boundaries” 
need not even be disjoint or separated by Γw, as is the case in Fig. 9c. In 
MoMsFE, they correspond (loosely) to the support of each mortar basis 
on ∂Ω. In Fig. 9a, the flux matrix corresponding to the coarse grid Ωk

c, 
Mk, is a 12 × 12 matrix; because there are 12 nodes along ∂Ωk

c. The 
entry Mk

ij of Mk (Eq. (37)) is obtained by first solving Eq. (44) subject to 
the pressure BC p|Γ = μi on ∂Ωk

c and then projecting the boundary flux 
derived from that solution (i.e., pressure basis φki) onto the mortar basis 
μj as outlined by Eq. (37) (see Fig. 9b). Hence, if n mortar bases are 
defined on ∂Ω, then Mk is an n×n matrix. What makes Eq. (48c) so 
attractive is that an identical relation holds for the (Stokes) flow equa-
tion at the pore scale 

∇⋅u = 0 (49a) 
μΔu − ∇p = 0 (49b)  

In PLMM, a unique M is calculated for every coarse grid (or pore) shown 
in Fig. 10a; called G in Mehmani and Tchelepi (2018, 2019). The pro-
cedure is the same as described above, except that Eq. (44) is replaced by 
Eq. (49) and a homogeneous velocity BC is imposed on all Γi (i.e., zero 
normal gradient). For the coarse grid in Fig. 10b, M is a 5 × 5 matrix that 
upscales the fine-scale bases shown in Fig. 10d. Other flux matrices in 

the context of PNM have been reported (Sun, 2012). But given the 
starting point of PNM is Eq. (43), a crude approximation to Eq. (49), the 
resulting M is less accurate. 

Eq. (48c) bears a strong resemblance to (the discretized) Darcy’s law. 
One may therefore be tempted to assume that M has properties similar to 
permeability: symmetry and positive definiteness. M is indeed sym-
metric for both Eq. (44) and (49). A simple proof of this is sketched in 
Appendix A for Eq. (44), where the symmetry of M is deduced from that 
of λ and the fine-grid discretization stencil. But unlike permeability, M is 
singular. Specifically, M has a zero column-sum, because the fluid is 
incompressible and so the boundary flowrates corresponding to each 
pressure basis must sum to zero. M also has a zero row-sum, because the 
pressure bases of Eq. (44) and (49) form a partition of unity over Ω, 
which is easy to verify. The diagonal entries of M are positive, because 
they correspond to inflow through parts of ∂Ω where p = 1 is imposed, 
and its off-diagonal entries are negative, because they correspond to 
outflow through parts of ∂Ω where p = 0 is imposed. Hence, M is 
diagonally dominant. From symmetry and diagonal dominance follows 
positive semi-definiteness. Note that if M is n×n, only the first n - 1 
columns need to be computed, because subtracting their summation 
from one yields the nth column. The above properties of M, in the context 
of MoMsFE applied to PNM, have been numerically explored by Sun 
(2012). 

Given that Eq. (48c) remains invariant between the pore scale and 
the Darcy scale, it is possible to coarsen Eq. (49) recursively, starting 
directly from the pore scale. The approach involves a hierarchical, or 
multilevel, decomposition of a porous medium into a nested sequence of 
coarse grids. Fig. 11 illustrates the idea. The domain at level 3 is 
decomposed into three nested coarse grids at levels 2, 1, and 0. Level 
0 corresponds to the pore scale and is governed by Eq. (49). The 
decomposition of level 1 into level 0 is obtained by watershed seg-
mentation as discussed in Section 3.4.2.2. The remaining levels are 
decomposed into Cartesian coarse grids, although more general coarse 
grids are also possible. At level 0, an M matrix is built for each coarse 
grid by solving Eq. (49). This step is identical to the construction of local 
bases in PLMM, shown in Fig. 10d, followed by their compression into M 
via Eqs. (45)–(47). 

Fig. 11. Multilevel decomposition of a domain (level 3) into a nested hierarchy 
of coarse grids (levels 0–2). Level 0 corresponds to the pore scale and levels 3 to 
the Darcy scale. 
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For clarity of exposition, we use the nomenclature "level-x coarse 
grid" to refer to the single coarse grid depicted by Fig. 11 at level x. 
Similarly, we use "level-x fine grid" to denote the fine grids (or sub-
domains) that comprise each level-x coarse grid. In Fig. 11, for each 
level-1 coarse grid, an M matrix is constructed by combining the M 
matrices at level 0. The combination is achieved by first defining a 
number of mortar bases, μi

1, on the boundary of each level-1 coarse grid, 
e.g., hat functions in Fig. 11. Corresponding to each μi

1, a pressure basis 
is computed over the level-1 coarse grid using the MoMsFE procedure 
outlined in Section 3.4.1.4 (see Fig. 9b). Namely, a unit pressure is first 
imposed on the boundary of the level-1 coarse-grid using the mortar 
bases (i.e., p = μi

1), then a pressure field inside the coarse grid is 
computed. This pressure field is expressed in terms of the level-1 fine- 
grid unknowns, which are the same as the level-0 coarse-grid unknowns. 
The coarse-scale problem at level 0, Eq. (42) in PLMM, can therefore be 
thought of as the “fine-scale problem” at level 1. The crucial point is that 
to solve Eq. (49) on the level-1 coarse grid, only the M matrices of the 
level-0 coarse grids are needed, but none of the pore-scale details 
(geometric or otherwise) defined on the level-0 fine grid. The pressure 
basis functions obtained in this manner on the level-1 coarse grid are 
subsequently condensed into an M matrix using Eqs. (45)–(47). 

The computation of M for a level-2 coarse grid proceeds in a similar 
vein, requiring all the level-1 M matrices contained within the level-2 
coarse grid to be combined. First, mortar bases, μi

2, are defined on the 
boundary of the level-2 coarse grid, e.g., hat functions in Fig. 11. The 
mortar bases are then used to compute a set of pressure bases over the 
level-2 coarse grid. These bases are expressed in terms of the level-2 fine- 
grid unknowns, which are the same as the level-1 coarse-grid unknowns. 
The coarse-scale problem at level 1, Eq. (37) in MoMsFE, can therefore 
be thought of as the “fine-scale problem” at level 2. Note that to solve Eq. 
(49) on the level-2 coarse grid, only level-1 M matrices are required, but 
not level-0 M matrices or any pore-scale information defined on the 
level-0 fine grid. The pressure basis functions obtained in this manner on 
the level-2 coarse grid are subsequently compressed into a level-2 M 
matrix using Eqs. (45)–(47). The final solution at level 3 (Darcy scale) is 
obtained by solving Eq. (37) over the whole domain, using only M 
matrices from level 2. 

The above multi-level strategy has several advantages. At all levels 
higher than 0, the form of the coarse-scale equation (used to compute M) 
is not assumed (unlike upscaling) but obtained from imposing mass 
conservation on coarse-grid interfaces (Eqs. (34) and (42)). Further-
more, at no point does Darcy’s law enter into the calculations. Pore-scale 
information are propagated directly from the Stokes equation, Eq. 
(49), up to whatever level they are desired. No assumptions about scale 
separation or periodicity, common to homogenization, are needed. The 
number (dots in Fig. 11) and order (linear in Fig. 11) of the mortar bases 
at each level (1 and 2 in Fig. 11) control the coarsening ratio and the 
upscaling error (PLMM has a different mechanism for controlling errors at 
level 0; Mehmani and Tchelepi, 2018). The coarsening ratio between 
levels k and k + 1 is defined as the size of M at level k divided by the size 
of M at level k + 1. The higher the number or order of the mortar bases, 
the lower the coarsening ratio and thus the upscaling error. 

The above multilevel strategy (Fig. 11) is a new proposition, but one 
that is made possible only recently due to extensive progress in the 
development of multiscale methods at the Darcy scale (Arbogast, 2012; 
Efendiev and Hou, 2008) and the pore scale (Mehmani and Tchelepi, 
2018, 2019). Significant advances in the 3D characterization of porous 
media, such as X-ray tomography (Wildenschild and Sheppard, 2013), 
and the development of high-powered parallel machines have served as 
crucial catalysts. Despite its promise, the approach has limitations. If the 
pore-scale Eq. (49) is replaced by the two-phase flow Eq. (38), then the 
calculations at level k not only depend on level k− 1, as with single-phase 
flow, but also on all the levels between 0 and k− 1. That said, the 
dependence on level 0 will be local, allowing the use of adaptivity 
criteria like the ones discussed in Section 3.4.2.2. If Eq. (49) is replaced 
with a single-phase solute transport equation, then the strength of 

molecular diffusion will determine the order of recurrence, i.e., whether 
level k depends on all, or only some, of the lower levels. If diffusion is 
strong, the concentration field is smooth and the chain of dependence is 
short (see also the discussion in Section 3.4.3). The tyranny of charac-
terization poses another obstacle by limiting the extent to which a 
domain can be characterized at level 0. Future advances in instrumen-
tation may open new doors, but for now, probabilistic descriptions are 
the best bet to extrapolate beyond what is measured. 

3.5. Imaging 

Images are among the most important data type for probing geologic 
porous media, because they provide a continuous spatial map of how 
rock properties (e.g., composition, porosity) or thermodynamic vari-
ables (e.g., concentration, pressure) are distributed. At the pore scale, 
microcopy images (μ-CT, FIB-SEM) capture the intricate and complex 
geometry of the void space and the mineralogical makeup of the solid 
phase (e.g., EDX). These images are often crucial inputs for many pore- 
and reservoir-scale simulations. Pore-scale models in particular (e.g., 
PNM, PLMM) rely heavily on the availability of 3D voxelized images of a 
few microns to millimeters in size to perform calculations, so much so 
that such image-based simulations are referred to as digital rock physics. 
But images are useful for two other reasons: (1) scale and data trans-
lation and (2) multiscale and multimodal characterization. These are the 
topics of the following sections. 

In Section 3.5.1, we provide an example of how high-resolution 
images of a meter-scale core, from a shale formation, can be used to: 
(1) downscale coarse-scale information, like well-logs, to obtain fine- 
scale information about the rock, like composition; (2) perform data 
translation to convert one fine-scale data type into another, like 
composition to thermal conductivity; and (3) how to upscale the 
translated data back to the coarse scale, where they may be used for 
reservoir simulation. Note that these are the exact same steps that we 
outlined in Section 2.5 in order to define downscaling and data trans-
lation. Here, we apply these concepts for a challenging geomaterial. 

In Section 3.5.2, we show how multiple imaging instruments, each 
probing a centimeter sized sample at a different length scale, can be 
combined to arrive at a near-complete characterization of the specimen. 
Multiscale imaging and multimodal imaging refer, respectively, to such 
combinations of resolution and instrumentation. They are motivated by 
the fact that no single instrument is capable of resolving the full range of 
length scales present in challenging geomaterials, like shales. The reason 
is an inherent tradeoff between resolution and field of view imposed by 
all imaging instruments. We present a workflow that alleviates this 
shortcoming. 

3.5.1. Image-based scale and data translation 
Consider the 100 ft. long core shown in Fig. 12, which is extracted 

from the Green River Formation (GRF) in the U.S. (Mehmani et al., 
2016b). The core is an immature source rock, or shale, high in organic 
content. The diameter of the core slab in Fig. 12 is ~8 cm. Suppose we 
are given a well-log of the rock’s density, which has a resolution of 
0.5–2 ft. Here, we regard the log as coarse-scale data. Since it is possible 
to deduce organic content from density in the GRF (Mehmani et al., 
2016b), we convert the density log into a well-log of average organic 
concentration, <co>. The bottom left graph of Fig. 12 shows how <co>

varies with depth. To produce hydrocarbons from oil shale, one must 
apply heat. Thermal conductivity is therefore an important per-
trophysical property of GRF rock. We now pose the following question: 
is it possible to translate the coarse-scale concentration, <co>, that is 
available to us into coarse-scale data on thermal conductivity, <k>, that 
would be useful for engineering? The answer is yes and we outline the 
steps below. 

In the GRF, nearly all petrophysical properties, including thermal 
conductivity, are strong functions of organic content. But if we were to 
plot experimental measurements of <k> versus the given <co>, we 
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would observe significant scatter. This is because for the same <co>, 
there are many more ways for the fine-scale thermal conductivity, k, to 
be distributed in space. Each distinct distribution corresponds to a 
different value of <k>. To reduce this variability, and thus the scatter, 
we must first downscale <co> to co. To do this, Mehmani et al. (2016b, 
2017) used both optical photographs and hyperspectral images in the 
near-infrared to obtain raw images of the rock; like the one shown in 
Fig. 12. While these images have a very high resolution, O(100 μm2), 
their gray-scale values are not equal to co. To obtain co, the raw images 
must be calibrated, or constrained, to the coarse-scale data <co>. Once 
this is done, co is recovered for every pixel in the image and thereby 
downscaling is complete (see bottom-left inset of Fig. 12). 

The next step is to map co to k, which is illustrated by the horizontal 
arrow in Fig. 12. A plot of these two fine-scale variables exhibits much 
less scatter than <co> versus <k>. This is because the former plot ex-
cludes the contribution to scatter from the fine-scale variability within 
the measurement support of the logging instrument (0.5–2 ft). Mehmani 
et al. (2016a) compiled millimeter-scale measurements of k versus co 
from the literature and proposed a universal relationship between them. 
Of course, this relationship is specific to the GRF and there is no reason 
to believe that a similar one would hold in other formations. But even in 
those cases, one could perform pore-scale simulations on voxelized im-
ages of millimeter-scale samples to numerically “derive” the relation-
ship. Another option would be to downscale not just co but also the 
concentration of other minerals in the rock, which is possible with a 
hyperspectral scanner, and then link them to k. Machine learning al-
gorithms, discussed in Section 3.6, are very attractive here because they 
can encode hidden connections between different data types useful for 
data translation. 

The final, and easiest, step is to upscale k to <k> (Mehmani et al., 
2016a). It is the easiest step because any one of the numerical upscaling 

methods, described in Section 3.3, can be used to accomplish this task. In 
Fig. 12, we discretize the thermal conductivity field k into a number of 
Cartesian fine grids (thin black lines). We then divide the core into a 
number of coarse grids, such as the gray interval in Fig. 12, and perform 
local upscaling. The BCs in the schematic correspond to the pressure-no 
flow BCs discussed in Section 3.3. In other words, the top and bottom 
boundaries of the coarse grid are sealed (or insulated) and the left and 
right boundaries are subjected to a constant temperature gradient. The 
fine-scale governing equation for heat conduction is identical to Eq. 
(14), with “k” corresponding to thermal conductivity (not permeability) 
and “p” to temperature (not pressure). Once <k> is calculated for all 
coarse grids, a “well-log” of thermal conductivity can be plotted versus 
depth (Fig. 12). We have thus translated <co> to <k>. 

The above workflow does not imply that such a strategy is always 
easy or straightforward to implement. Sometimes limitations in imaging 
instruments or challenges posed by the rock mineralogy (like transition 
metal-oxides for optical images of GRF) hinder effective downscaling 
(Mehmani et al., 2016b). Other times a simple relationship between 
fine-scale variables, like the one between k and co in the GRF, is not 
possible or easy to construct. But despite these challenges, the workflow 
highlights the importance of (hyperspectral, optical, and other) images 
for scale and data translation and provides a framework for using them 
to convert easy-to-acquire data into hard-to-acquire data. 

3.5.2. Multiscale imaging for characterization 
The trend in image-based characterization of nanoporous media has 

followed a trajectory of increasing resolution to visualize pores and 
other microstructural details (Loucks et al., 2012; Curtis et al., 2012; Ma 
et al., 2018; Goral et al., 2019; Frouté and Kovscek, 2020). Such studies 
have improved our understanding of the distribution of pore shapes, 
sizes, and fractions within both the organic and inorganic constituents of 

Fig. 12. Schematic of an image-based data translation workflow. Top: A 100 ft. long core from the Green River Formation (GRF), U.S., imaged with an optical camera 
(Mehmani et al., 2016b). Pixel sizes are O(100μm2), which corresponds to the field of view of the SEM image shown, where minerals (gray) and organic matter 
(black) are distinguishable. Bottom: coarse-scale (well-log) measurements of organic concentration, <co>, are downscaled to obtain fine-scale organic concentration, 
co, using a hyperspectral near-infrared scanner (hotter colors mean higher co). The photograph and fine-scale map of co correspond to the green highlighted segment 
of the core. The fine-scale co is then translated to a fine-scale map of thermal conductivity, k (data translation). There is a one-to-one relation between co and k in the 
GRF (Mehmani et al., 2016a) (not shown). The fine-scale thermal conductivity, k, is subsequently upscaled (using local upscaling; see Section 3.3) to obtain the 
coarse-scale (or log-scale) thermal conductivity, <k>. The fine grids used to perform numerical upscaling correspond to the thin black lines. The above workflow 
allows deducing <k> from <co>. 
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shales and other porous media. Imaging instruments such as trans-
mission X-ray microscopy and FIB-SEM, among others, can probe rock 
samples at different resolutions and produce 3D or quasi-3D images. But 
despite their flexibility, such instruments are limited to small fields of 
view and thus small sample sizes. Because the total rock volume imaged 
is small, the statistical significance of the data may be questionable. 
Hence, imaging is subject to the tyranny of characterization, and mul-
tiscale imaging attempts to mitigate that. 

Multiscale imaging (Pini and Madonna, 2016) refers to the acquisi-
tion of 2D or 3D images of an object at multiple spatial resolutions. 
When different imaging instruments are employed to accomplish this 
task, the process is called multimodal imaging (Anderson et al., 2020a). 
Both multiscale and multimodal imaging are powerful tools that provide 
a wealth of data about a particular physical process (e.g., diffusion) or 
the microstructural heterogeneity of a geomaterial (e.g., cracks, vugs, 
nanoporosity, and macroporosity). If used judiciously, multiscale im-
ages provide a useful guide for how to sample experimental specimens 
from a rock at places where the physics are most interesting or relevant 
to the application at hand (e.g., cracks, kerogen-mineral interfaces). The 
pitfall one must avoid is to eliminate human bias. This is possible by 
introducing some level of automation into the sampling workflow. 
Multiscale and multimodal imaging also provide a unique opportunity 
to probe the interplay between small-scale features, like kerogen and 
nanopores, and large-scale features, like fractures and vugs. A single 
instrument or resolution is often incapable of such a feat. 

“Top-down” imaging is a particular application of multiscale imag-
ing, in which a cascade of nested images is acquired to capture succes-
sively finer-scale features of a sample. The approach is an efficient way 
to probe the interrelation between different microstructural features at 
multiple scales (Vega et al., 2015; Aljamaan et al., 2017). Fig. 13 illus-
trates the idea for a sample of Barnett shale. The length scales probed 
range from a few centimeters to a few nanometers, i.e., 7 orders of 
magnitude. The workflow begins from a core plug (2.5 cm diameter) 
that is imaged using a conventional X-ray computed tomography (CT) 
scanner. A typical CT scanner captures large-scale features (e.g., frac-
tures) and has a resolution of ~200 × 200 × 1000 μm3. The gray-scale 
values correspond to the density of the rock, from which porosity can be 

deduced. But to go beyond porosity, and to obtain useful data about the 
connectivity of the pore space, a penetrant (or contrast agent) like 
krypton, argon, or xenon is used. The penetrant diffuses into the pore 
space, if accessible, and attenuates X-rays more strongly than the sur-
rounding matrix (Vega et al., 2014). This allows accessible flow paths of 
the rock to be visualized. Gaseous penetrants are common because they 
are easier to inject than liquids (due to their lower viscosity), are 
nonreactive, and do not cause clay swelling. To increase contrast, two 
images are subtracted from each other: one of the sample filled with gas 
and another of the sample emptied of gas. This fluid substitution tech-
nique can also be used to visualize temporal evolutions of flow and 
diffusive mass transfer into a nanoporous matrix (Alnoaimi and Kovscek, 
2019). 

In the top-down workflow of Fig. 13, CT images of the core plug are 
used as guides to select a cross section for finer-scale analysis. The se-
lection is driven by features that are of most interest to the researcher. 
Here, fluid accessibility and conductivity of the pore space were of in-
terest. After a cross section is selected, the plug is physically cut across 
that cross section, polished, and imaged with an SEM. Since SEM, like 
any other imaging instrument, has a limited field of view, many smaller 
images are taken to cover the full cross-sectional area of the core plug. 
This is done by following a rastering pattern across the sample’s surface. 
The small images are then stitched together to produce a large mosaic 
over the entire cross section. The mosaic resolves features of O(1 cm) to 
O(100 nm), which is much more detailed than the CT image. But 
because the CT image contains useful information about pore connec-
tivity, it is registered against the SEM mosaic. In Fig. 13, the registration 
is done with respect to high-gas-concentration regions colored in red. To 
probe the sample at an even finer scale, the mosaic is used as a guide to 
select subsamples for transmission X-ray microscopy (TXM or nano-CT). 
For a cylindrical specimen of 45 μm in diameter, TXM has a resolution of 
30 × 30 × 30 nm. This is able to capture the spatial distribution of in-
dividual minerals and kerogen pockets within the shale fabric. Here, 
TXM reveals that microcracks seem to occur preferentially along 
kerogen-mineral interfaces, suggesting a possible pathway for gas flow. 
We may probe the sample at an even finer scale by using the TXM images 
now as a guide to select lamellar subsamples that are then imaged via 

Fig. 13. Schematic of a top-down imaging workflow. Images 
cascade downward in length scale from O(cm) to O(nm). (a) 
Photograph of a Barnett Shale core and its CT image when 
flooded with an X-ray absorbing gas (Kr). The CT image re-
veals gas occupancy (hotter colors mean more gas). (b) A 2D 
cross section of the CT volume is extracted and registered with 
an SEM mosaic. (c) Subsamples are chosen from high-gas- 
concentration regions and used in TXM imaging. (c) 
Segmented TXM reveals mineral and organic constituents. (d) 
TXM is subsampled again and used in TEM imaging, which 
shows that the organic matter (kerogen) is sandwiched be-
tween two inorganic grains. Darker gray areas correspond to O 
(nm) pores. This image was composed from the works of 
Frouté and Kovscek (2020), Vega et al. (2015), and Aljamaan 
et al. (2017).   
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scanning transmission electron microscopy (TEM). The resolution of 
TEM is ~1 nm, which reveals nano-structural information such as the 
distribution and size of pores inside the kerogen. 

The foregoing example highlights how multiple imaging in-
struments, operating at vastly different scales, are used in tandem to 
probe a geomaterial (e.g., shale) at ever finer detail without losing sight 
of how it all ties to the largest scale. None of the instruments by them-
selves is able to probe the sample in full, but together, they provide the 
flexibility to examine selectively those parts of the sample where the 
physics beckon for a deeper look. It is also worth noting that for every 
image acquired at a particular scale of observation, there exists a 
computational method best-suited for simulating the physics at that 
scale, and which uses the image as input. One example is the lattice 
Boltzmann method (LBM) presented in Section 4, designed to simulate 
gas flow through nanopores. 

3.6. Machine learning 

Machine learning forms the basis of analyzing and making pre-
dictions in data-rich environments and has become popular for char-
acterizing shales. Data-driven scale and data translation differs 
fundamentally from many of the upscaling and downscaling methods 
discussed earlier that rely on the computational and mathematical 
structure of the underlying equations. Machine learning methods aim to 
assimilate and encode data across different length scales and acquisition 
modalities by training models that predict one data type from another or 
capture shared representations between multiple data domains. In 
characterizing shales, images are the most readily available data type. 
Accordingly, we focus our attention on advances in machine learning to 
process image-based data in service of scale and data translation. We 
note the following exposition neglects, for the sake of brevity, an 
important and emerging segment of the AI literature called “physics- 
informed machine learning”, which is concerned with using AI to solve 
partial differential equations. Impressive results (Raissi, 2018; Raissi 
et al., 2019), mixed with occasional failures (Fuks and Tchelepi, 2020), 
in this space are enabling the simulation of dynamical systems in a 
matter of seconds while honoring desirable physical constraints (e.g., 
mass conservation). These methods certainly do have a place in scale 
translation, but our focus is directed towards characterization and 
visualization tasks that are pivotal to experimental workflows. 

3.6.1. Upscaling with data-driven proxy models 
Supervised machine learning methods are fundamentally function 

approximators whose forms depend on the properties of the underlying 
function being approximated (Hastie et al., 2009). Existing methods 
divide roughly into discriminative and generative models. Discrimina-
tive models aim to predict a response value or class label from input 
data, while generative models seek to encode the underlying probability 
distribution of the data so that new realizations can be reconstructed. In 
upscaling, discriminative models are more useful, as they can either 
predict coarse-grid properties directly from fine-grid inputs or embed 
data-driven proxy models into a broader simulation workflow (e.g., to 
accelerate computations). Previous studies on computing upscaled pa-
rameters from fine-scale images have used convolutional neural net-
works (CNNs) to predict diffusivity from synthetic images (Wu et al., 
2019a), permeability and velocity distributions from CT images of 
sandstone (Kamrava et al., 2020; Santos et al., 2020), and shale pro-
duction data from limited field-scale simulations (Klie and Florez, 
2018). As for data-driven proxy models, existing work has embedded 
neural networks into macroscale simulators. For example, Bao et al. 
(2020) used a multilayer perceptron as a proxy model to capture device- 
scale effects of pore-scale flow in batteries, and Wang and Battiato 
(2021) embedded a recurrent neural network (RNN) into an macroscale 
framework that simulates flow through a multiscale fracture network. 
Despite these advances, works on shales remain limited and there is 
some indication that under certain conditions the unique microstructure 

of shales can cause existing methods to fail (Wu et al., 2019a). Such 
challenges warrant continued work with a particular emphasis on 
microstructurally complex rocks, including shales. 

3.6.2. Downscaling through single image super-resolution 
Downscaling is underdetermined (Section 2.5) and especially chal-

lenging when fine-scale information is scarce or absent (tyranny of 
characterization). Machine learning can be used to synthesize statisti-
cally plausible realizations of the fine scale wherever such information is 
missing. Generative adversarial networks (GANs) (Goodfellow et al., 
2014; Ledig et al., 2017) and convolutional neural networks (CNNs) 
(Dong et al., 2016) play a particularly important role in this space. The 
best example of data-driven downscaling in shales is single image super- 
resolution (SISR), which seeks to construct high-resolution images from 
low-resolution inputs. Applied to porous rocks, SISR has been used to 
enhance the “sharpness” of low-resolution X-ray images as part of a 
Digital Rock Physics workflow, employing algorithms like CNNs (Da 
Wang et al., 2019), neighbor embedding (Wang et al., 2018), and tem-
plate matching (Wu et al., 2019b). 

While promising results have been achieved with synthetic data, very 
few studies have applied SISR (or similar downscaling techniques) to 
multimodal and multiscale experimental data. We believe a key devel-
opment will be to apply SISR models in experimental settings to over-
come challenges and limitations of existing imaging setups. An example 
is shown in Fig. 14, where paired CT and μCT images are acquired, 
aligned, and processed to train an SISR model. The model can then be 
used to convert low-resolution X-ray images of the shale rock to high- 
resolution virtual μCT maps. A trained SISR model could also be used 
to increase the spatial resolution of time-dependent experiments 
captured by a CT scanner, such as the reactive transport of a solute or the 
diffusion of a gas. 

3.6.3. Data translation across imaging modalities 
Data translation is another key area where machine learning can be 

useful for characterizing shales. Here, image-to-image translation (Efros 
and Freeman, 2001; Isola et al., 2017; Zhu et al., 2017) is of particular 
value, designed originally to transform images from one domain of 
acquisition to another, e.g., predicting daytime images from nighttime 
images. This opens up fertile grounds for so-called “multimodal imag-
ing”, where hard-to-acquire images from a potentially destructive in-
strument, like FIB-SEM, can be linked to easy-to-acquire images from a 
non-destructive instrument, like nano-CT. Once trained, the image 
translation model can be used to convert fast-to-obtain but potentially 
less useful data from the latter instrument into slower-to-obtain but 
more useful data from the former instrument. An example was presented 
by Anderson et al. (2020a), who assembled a dataset of paired nano-CT 
and FIB-SEM images of Vaca Muerta shale and trained a 2D image-to- 
image translation model (Isola et al., 2017). Future directions in 
multimodal imaging include generalizing this and similar image trans-
lation workflows to 3D-to-3D image prediction and developing algo-
rithms that are trainable on both paired and unpaired images (Zhu et al., 
2017). Another opportunity lies in the use of conditional GANs (CGAN) 
(Mirza and Osindero, 2014) to enhance prediction quality by con-
straining output images to non-image priors. Yet another is to recon-
struct virtual (μCT) images directly from non-image inputs like NMR. 

3.6.4. Reconstructing and learning the pore structure 
A key part of scale and data translation is the ability to reconstruct 

synthetic images of porous rocks in such a way that the unique statistics 
of a geology of interest are honored. In downscaling, generated images 
can be used to either fill a resolution gap or to augment the training pool 
of a deep learning algorithm (Kamrava et al., 2019; Shams et al., 2020). 
In data translation and upscaling, generated images can be used to build 
structure-property relations that link morphological features of the 
microstructure to petrophysical properties (Adler et al., 1990). Most 
methods for reconstructing synthetic images fall under statistical (Caers, 
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2001; Manwart et al., 2000) or deep learning categories (Mosser et al., 
2017). Statistical methods generate realizations by using a collection of 
statistical measures (e.g., moments, chord functions, variograms) gath-
ered from one or more training images (Roberts, 1997). The realizations 
are made to have the same measures as the training images. Statistical 
methods require very little data (Okabe and Blunt, 2004, 2007; Bai and 
Tahmasebi, 2020) and 3D images can be easily reconstructed from 2D 
inputs (Tahmasebi et al., 2012) (with certain assumptions about statis-
tical isotropy). The tradeoff is that they are slow in generating large 
volumes and most are designed to handle only binary images. Shale 
images are non-binary and thus require methods that can generate gray- 
scale images resolving kerogen, minerals, and the void space. Deep 
learning methods have shown a lot of promise (Mosser et al., 2017, 
2018) but have required 3D inputs to train. This has precluded gener-
ating 3D volumes based on 2D training data like SEM. To overcome the 
challenge, Anderson et al. (2020b) developed a method based on 
generative flow models (Dinh et al., 2014, 2016; Kingma and Dhariwal, 
2018) that synthesizes grayscale rock volumes from 2D inputs. The 
synthesis is comparable in quality to 3D GANs. When tested on a Ben-
theimer sandstone, the reconstructions matched the permeability and 
Minkowski functionals of the training data (Guan et al., 2021). The 
approach was further generalized to reconstruct multimodal (TXM and 
SEM) images of shales (Anderson et al., 2020b), making it applicable to 
other image types. 

3.6.5. Future directions for data-driven scale translation in shales 
Beyond further advances in machine learning methods to processes 

different combinations of data, scales, and modalities, we see three areas 
for future research that will enable effective scale and data translation in 
shales. First is data curation: while machine learning is very powerful in 
assimilating heterogeneous data types, the most difficult step is 
acquiring and preprocessing paired data across input and output do-
mains. Since predictive models require a large number of paired data 
points, future work on scale and data translation should accompany 
developments in single-scale and single-modality algorithms that enable 
robust data processing, like segmentation and image registration. Such 
efforts would not only increase the reliability of machine learning 

algorithms for scale translation, but also accelerate their training and 
broader experimental deployment in geosciences. 

Second is transfer learning: in some application domains (e.g., super- 
resolution) data are much easier to acquire than others (e.g., flow sim-
ulations or experiments). Transfer learning refers to repurposing a ma-
chine learning model trained in one domain to be deployed in another, 
where data are scarcer. Images provide a perfect example. The feature 
maps buried inside a convolutional neural network carry relevant 
multiscale and multimodal information. Image-to-image deep learning 
architectures should therefore not be viewed as mere unidirectional 
operators for upscaling, downscaling, or data translation, but as links 
between different data types, scales, and modalities, on which they are 
trained. Fig. 15 illustrates an example where an image-to-image super- 
resolution architecture is repurposed for other tasks performed in scale 
translation, e.g., data-driven proxy modeling embedded within a simu-
lator. Transfer learning could, therefore, be useful in accelerating 
progress towards scale and data translation of data-scarce problems. 

The third and final area is autodifferentiation (AD): a critical step in 
integrating proxy models into physics-based simulators is the avail-
ability of robust AD algorithms. AD allows exact derivatives (or Jaco-
bians) of a function to be calculated, using a computational graph, 
without the need for finite differences (Griewank and Walther, 2008). 
Training deep learning models often relies on stochastic gradient 
descent optimizers (or its variants) (Kingma and Ba, 2014), where the 
gradient of an objective function must be repeatedly computed. Physics- 
based simulators equipped with AD could efficiently train proxy models 
that are embedded into their workflow. Currently, only a limited num-
ber of physics-based simulators are equipped with AD (e.g., MRST (Lie, 
2019) and AD-GPRS (Younis, 2011)). Therefore, future work should 
focus on integrating AD capabilities into simulator source codes in such 
a way that proxy-models can be seamlessly embedded into their 
framework to accelerate computationally expensive tasks. 

4. Case studies 

The Center for Mechanistic Control of Unconventional Formations 
(CMC-UF) is an Energy Frontier Research Center, funded by the U.S. 

Fig. 14. Diagram of SISR in a shale imaging experimental workflow. Multiscale CT/micro-CT images are acquired and used to train a deep learning SISR model, such 
as SR-GAN from Ledig et al. (2017). During deployment, high-temporal but low-spatial resolution CT images are acquired and then super-resolved using the 
trained SISR. 
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Department of Energy, whose mission is to understand the fundamental 
interactions between fluids and unconventional source rocks, such as 
shales. As members of this center, we grapple with challenging questions 
related to scale and data translation in shales, and part of our activities 
rely on developing disparate representations of the same physics that 
correspond to vastly different spatiotemporal scales. They include mo-
lecular dynamics (nm), density functional theory (nm-μm), pore-scale 
modeling (μm-mm), and reservoir simulation (m-km). In accordance 
with our efforts, we find it instructive to present here two case studies, 
which at the surface might seem to have little to do with the methods 
presented in earlier sections. But as we later point out, they are both 
instances of numerical upscaling. 

The first case study examines gas flow through nano-sized pores. It 
discusses the development of a lattice Boltzmann method (LBM) for 
capturing the diverse transport mechanisms at play. But to capture them 
correctly, the model must be parameterized, preferably by molecular 
dynamics simulations. Put differently, finer-scale simulations are 
required to derive coarse-scale parameters. The model may also be 
calibrated to other sources of data such as experiments. But regardless of 
where the calibration data come from, the key point is that the case 
study involves two steps: (1) postulating an educated guess for the form 
of the governing equations of nano-scale gas flow, and (2) using fine- 
scale simulations or other data types to parameterize these equations. 
Of course, the postulated model in step (1) must be a good one, other-
wise the number and sensitivity of the parameters to be calibrated in 
step (2) increases commensurately. In Section 4.1, we also review recent 
literature on gas transport in nanoporous media. 

The second case study examines dual continuum models, which are 
yet another instance of numerical upscaling. Dual continuum models 
resolve the flow in fractures with a different equation than the flow in 
the matrix. In shales, this is relevant because the formation is either 
hydraulically fractured or contains natural fractures. The matrix and the 
fracture communicate, or exchange mass across their shared interface, 
captured by a transfer function. The coefficients in the transfer function 
need calibration. Following similar arguments as presented in Sections 
3.1–3, one may attempt to derive a homogenized equation for a dual 
continuum medium from a set of fine-scale equations (Stokes in frac-
tures and Darcy in the matrix). Such a model would inevitably require 
closure assumptions, one of which is scale separation. Dual continuum 
models can thus be viewed as either homogenized equations that hold 
under certain restrictive assumptions, or as postulated equations that 
need to be parameterized by field-scale data or fine-scale simulations. 
We provide a brief overview of dual continuum equations below. 

4.1. Pore-scale simulation of gas transport in nanopores 

Recent characterization of shale samples (Frouté and Kovscek, 2020) 
using FIB-SEM and STEM techniques have highlighted their complex 
nature. Shale and tight formations comprise a multitude of nanoscale 
pores ranging in size from 1 nm to 200 nm. While gas flow in larger sub- 
micrometer pores may be reasonably modeled with continuum models, 
smaller pores present difficulties both in terms of transport and phase 
behavior (Wang and Aryana, 2021). The flow regime within pores 1–10 
nm large is either slip or transitional, where continuum-based de-
scriptions (e.g., the Stokes equation) likely fail. To capture the physics 
correctly, scale-appropriate modeling paradigms such as Molecular 
Dynamics (MD) simulation or the Lattice Boltzmann method (LBM) (He 
and Luo, 1997; Chen and Doolen, 1998) are needed. In MD, the dynamic 
evolution of a collection of molecules is captured by modeling the pre-
cise interactions between them. In the absence of physical observations, 
MD can provide reliable data for understanding the fundamental physics 
governing flow and transport (Skoulidas et al., 2002; Firouzi and Wilcox, 
2012). 

Despite its power, MD is computationally prohibitive at larger 
spatiotemporal scales. An alternative, is to use a larger-scale simulation 
method like LBM, which serves as a useful intermediary tool for bridging 
the gap between the molecular and sub-micron scales. Data obtained 
from MD simulations (or carefully designed experiments) can be used to 
constrain the parameters of LBM (i.e., numerical upscaling). The gov-
erning equation solved by LBM is the discrete version of the Boltzmann 
equation given by 

fi(x+ ceiδt, t+ δt) − fi(x, t) = Ωi(f (x, t) )+ δtFi(x, t) (50) 

In Eq. (50), the subscript i denotes the index of the discrete velocity; fi 
the discrete distribution function along the i-direction; c the lattice speed 
defined as the ratio of the lattice spacing over the time step (set to 1); Ωi 
the collision operator responsible for changes in fi due to molecular 
collisions; and Fi the forcing term associated with the body force G. 
Continuum variables, like density ρ and velocity u, are obtained from 

ρ =
∑

i
fi u =

1
ρ

(
∑

i
eifi +

δt
2

G

)

(51) 

For flow at large Knudsen numbers (Kn), defined as the ratio of the 
molecular mean free path over the characteristic length of the flow field, 
the interactions between molecules and the pore walls dominate. In this 
case, the transport and phase behavior of the fluid deviate from those at 
bulk conditions. Fig. 16 shows that three mechanisms are responsible for 
gas flow through confined pores: viscous flow, surface diffusion, and 
Knudsen diffusion (Do et al., 2001). Viscous flow is due to interactions 

Fig. 15. Workflow showing a super-resolution ResNet architecture (from Ledig et al., 2017) trained to predict fine-scale micro-CT images from coarse-scale input 
images. The feature maps learned in this architecture could be harnessed for other data-driven scale translation tasks in which data are scarce. 
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between gas molecules and results in a parabolic velocity profile (see 
Fig. 16b). Surface diffusion accounts for adsorbed gas molecules hop-
ping along the pore wall (see Fig. 16c), which enhances the total flux of 
the gas. Knudsen diffusion is the additional flux imparted by the colli-
sions between gas molecules and pore walls (see Fig. 16c). This results in 
a nonzero (slip) velocity near the solid surface. Fig. 16b illustrates the 
contribution from each mechanism to the overall flux profile. LBM en-
ables accurate characterization and quantification of these transport 
mechanisms through appropriate boundary conditions and forcing 
terms near the walls (Eqs. (52)–(53)). 

Three types of boundary conditions are commonly employed in LBM 
simulations: bounce-back (BB), specular reflection (SR), and Maxwellian 
diffusive reflection (MDR). In BB, molecules colliding with a wall are 
reflected back in the opposite direction (Nie et al., 2002), emulating no- 
slip boundary conditions. SR reverses only the velocity component 
perpendicular (not parallel) to the wall (Lim et al., 2002). Since the 
implementation of SR depends on the wall geometry and the direction of 
a molecule’s motion, its application is nontrivial for complex geome-
tries. In MDR, molecules that collide with walls lose memory and are 
scattered back following a Maxwellian distribution (Ansumali and 
Karlin, 2002). Slip models are often written in terms of continuum ve-
locities, and the second-order slip model below is believed to be capable 
of describing gas flow at high Kn (Zhang et al., 2012; Liehui et al., 2019) 

us − uw = C1Kn
∂u
∂n

⃒
⃒
⃒
⃒

w
− C2Kn2∂2u

∂n2

⃒
⃒
⃒
⃒

w
(52)  

where C1 and C2 are slip coefficients and n is the wall normal coordinate. 
The subscript w specifies that a variable is defined at the pore wall. To 
mimic the slip boundary condition given by Eq. (52) in LBM, a combi-
nation of LBM boundary conditions are suggested. Prominent examples 
include BB-SR (Guo et al., 2008), SR-MDR (Tang et al., 2005), and BB- 
MDR (Chai et al., 2010). The BB-MDR is particularly attractive for 
simulating flow in complex geometries because of its convenient 
implementation (Wang and Aryana, 2020). 

The interaction between fluid molecules, and between fluid and solid 
molecules, is incorporated in the form of external forces that act on the 
density distribution function. A long-range interaction force between the 
fi is given by (Shan and Chen, 1993) 

Fff(x, t) = − c0Gffψ(x, t)
∑

i
wiψ(x+ eiδt, t)ei (53)  

where Gff is intermolecular strength, ψ is the pseudopotential function 
related to the fluid density ρ, wi is the weighting factor, and c0 is a 
constant. Both wi and c0 depend on the lattice structure. The interaction 
between particles and walls is given by a similar form (Sukop and Or, 
2004) 

Ffw(x, t) = − Gfwψ(x, t)
∑

i
wis(x+ eiδt, t)ei (54)  

where Gfw is the adsorptive strength, and s is a switch function equal to 1 
for the solid wall and 0 elsewhere. We observe that both Fff and Ffw rely 
on ψ. Determination of ψ requires an appropriate equation of state (EOS) 
(Yuan and Schaefer, 2006). Examples include the van der Waals (vdW)- 
EOS (Van Der Waals, 1873) and the Peng-Robinson (PR)-EOS (Peng and 
Robinson, 1976). These two EOSs may not be valid in confined spaces 
because the thermodynamic behavior of confined fluids deviate from 
their bulk phase (Sobecki et al., 2019). Yang et al. (2019) proposed an 
extension of PR-EOS, referred to as EPR-EOS, that incorporates the shift 
of critical temperature in the model. Wang and Aryana (2021) proposed 
an additional modification, referred to as mEPR-EOS, in which shifts in 
critical pressure and temperature are evaluated independently. Nu-
merical solutions of mEPR-EOS are validated against the density phase 
diagram of methane constructed by MD simulations under different 
confinement scenarios. 

Recent studies have combined LBM and MD to translate observations 
from molecular scale to mesoscopic or macroscopic scales (Liu et al., 
2021). As summarized by Phan et al. (2020), the key to the success of 
such scale translation is to achieve agreement between LBM and MD in 
the same domain. This is very similar to the numerical upscaling 
workflow discussed in Section 3.3. For example, Zhao et al. (2016) 
determined the adsorption parameters of LBM by matching the 
adsorption curve from MD. Yu et al. (2017) studied the transport of 
methane in nano-sized slits, where the flux profiles of LBM and MD were 
made to agree. Wang and Aryana (2021) revisited this problem by 
incorporating mEPR-EOS into LBM. Values of adsorptive strength were 
determined such that the flux profiles agreed with MD (Sobecki et al., 
2019). 

4.2. Dual continuum models of fracture-matrix interaction 

The dual continuum approach conceptualizes a porous medium as 
two superimposed domains: a matrix volume and a fracture volume. The 
latter does not resolve fractures explicitly. The matrix volume accounts 

Fig. 16. A schematic of transport mechanisms of gas inside nano-sized slits. (a) Interaction of gas and wall molecules; (b) a cross-sectional mass flux profile. The mass 
flux profile is partitioned into three sub-regions, representing contributions from three transport mechanisms: viscous flow, surface diffusion, and Knudsen diffusion; 
and (c) a graphical illustration of each transport mechanism. 
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primarily for fluid storage and the fracture volume for fluid transport 
(Barenblatt et al., 1960; Warren and Root, 1963). The matrix is often 
assumed to be much less permeable than the fracture, and the mass 
exchange between the two is described by transfer functions that can be 
determined analytically, numerically, or using experimental data. Dual 
continuum models divide into the categories of dual permeability, dual 
porosity, and multiple interacting continua (MINC) models (Pruess, 
1992). Dual permeability systems account for inter-matrix, inter--
fracture, and matrix-fracture mass transfers. Dual porosity is similar 
except it ignores inter-matrix mass transfer. MINC models resemble dual 
porosity but may consist of a matrix that is discretized into multiple grid 
blocks. In both dual porosity and MINC, the matrix communicates only 
locally (over short distances) with the fractures. The matrix-to-fracture 
transfer functions incorporate the characteristic lengths and areas of 
the fractures and the matrix. 

The dual continuum approach applied to multiphase systems differs 
somewhat from that applied to single-phase gas flow in tight media (e.g., 
shales) with adsorption. Here, we follow Alnoaimi and Kovscek (2019) 
who studied the latter problem with a MINC model. The computational 
domain is first divided into two types of overlapping grid blocks: matrix 
blocks and fracture blocks. The flow within fracture blocks (f) is 
described, in discretized form, by 

Δ
[
Tf Δpf

]
=

Vf

Δt
Δt

[φf

Bgf
+ ρr

(
1 − φf

)
Vgf

]

− τf (55)  

where Tf is the transmissibility between fracture blocks, ∆pf the change 
in fluid pressure in the fracture block, ρr the rock density, Vf the fracture 
block volume, φf the fracture block porosity, τf the matrix-fracture 
transfer function, Vgf the amount of gas adsorbed at a given pressure 
in the fractures, Bgf the gas formation volume factor in the fracture 
block, and Δt the time step. 

The flow within a matrix block (m) adjacent to a fracture block is 
described by 

Δ
[

TmΔ
(p

Z

)

m

]

=
Vm

Δt
Δt

[
φm

Bgm
+ ρr(1 − φm)Vgm

]

+ τf (56)  

where Tm is the transmissibility between matrix blocks, Z the real gas 
compressibility factor, Vm the matrix block volume, φm the matrix block 
porosity, Vgm the amount of gas adsorbed on the matrix, and Bgm the gas 
formation volume factor in the matrix block. If there are more than one 
matrix blocks connected to each fracture block, then the flow within 
matrix blocks not adjacent to the fracture is described by 

Δ
[

TmΔ
(p

Z

)

m

]

=
Vm

Δt
Δt

[
φm

Bgm
+ ρr(1 − φm)Vgm

]

(57) 

The interaction between the matrix and fracture systems in Eqs. 
(55)–(56) is captured by a source term, or transfer function, that as-
sumes various forms. Transfer functions describe the rate at which the 
matrix supplies mass to the fractures, or vice versa. For flows with a 
diffusive driving force, we have 

τf =
DAmφm

γLm

Mg

RTρsc

[(p
Z

)

f
−
(p

Z

)

m

]

(58)  

where Am is the interfacial area between matrix and fracture blocks, D 
the (Knudsen) diffusivity, Lm the characteristic length of the matrix, γ the 
tortuosity, Mg the molecular mass, R the universal gas constant, ρsc the 
density at standard conditions, and T temperature. The transmissibilities 
Tf and Tm are expressed as follows 

Tf =
kA

Bgf μgLf
(59)  

Tm =
DAmφm

γLm

Mg

RTρsc
(60)  

where k is the (apparent) permeability, μg the gas viscosity, Af the 
interfacial area between fracture blocks, and Lf the fracture block length. 
Both Bgf and Bgm are computed using 

Bg =
ρscZT
Tscp

(61)  

where the subscript sc denotes standard conditions. The pressure p in Eq. 
(61) is equal to the matrix block pressure for Bgm and the average 
pressure between adjacent fracture blocks for Bgf. 

One strength of the above dual continuum model is the ease with 
which different physical mechanisms like convection, diffusion, and gas 
sorption can be incorporated. Another strength is that the model pa-
rameters can be determined from first principles through either exper-
iments that measure τf by mass balance, images that capture changes in 
fluid mass within the matrix/fracture, or fine-grid simulations that can 
serve as calibration data. The division of the heterogeneity and physical 
processes into fracture and matrix sub-systems provides significant 
flexibility for experimental characterization. For example, the porosity 
of the matrix can be measured independently from that of the fracture, 
and the convective flow within the fracture can be probed separately 
from the diffusive transport in the matrix. 

5. Summary 

This review was motivated by the need to describe physicochemical 
processes in geologically challenging porous media, such as shales, that 
display large disparity in length and time scales. We showed that such 
geomaterials generally do not exhibit scale separation and therefore 
cannot be described with a closed set of equations at only one scale. 
Instead, the processes observed at large scales are intimately coupled to 
those occurring at small scales. Homogenization, consisting of a set of 
mathematical tools to derive analytically closed-form macroscopic 
equations for scale-separable media, become inadequate. Nonetheless, 
they provide an important theoretical foundation upon which numerical 
and experimental methods, required to solve such problems, are based. 
These methods consist of hybrid computing, numerical upscaling, mul-
tiscale computing, high-resolution imaging, and machine learning. 
Collectively, they enable scale translation, which we defined as using 
data at one spatiotemporal scale to infer needed information at another, 
even in the absence of scale separation. After establishing broad defi-
nitions for upscaling, downscaling, tyrannies of prediction, and data 
translation, we provided a pedagogical review of each method and drew 
instructive comparisons between them. For example, we said that hybrid 
methods simultaneously solve a homogenized coarse-scale equation 
alongside a fine-scale equation to establish a two-way coupling between 
the coarse and fine scales. At the surface, this looks very different from 
multiscale computing, that performs a series of decoupled local calcu-
lations that are then used to formulate and solve a global coarse-scale 
problem. But upon closer examination, the only difference was that 
hybrid methods use an analytically homogenized equation to simulate 
coarse-scale physics, whereas multiscale methods use “numerically ho-
mogenized” variables to accomplish the same task. We also noted that 
while multiscale methods are often thought to apply only when the 
tyranny of characterization is absent (i.e., the domain can be fully 
characterized at the fine scale), this need not be the case. The basis 
functions computed on a few coarse grids may be assumed to be identical 
to those of other coarse grids, for which a fine-scale characterization is 
unavailable. While not common, there is nothing in the way of using 
multiscale methods in this fashion. The practice is much like homoge-
nization, in which a closure problem is solved on one coarse grid and 
then assumed to hold across the whole domain. We drew similarly useful 
comparisons among the methods. 

A large portion of the paper was devoted to multiscale methods, 
because they possess the rare ability to both downscale their coarse- 
scale solution, and estimate and control their prediction errors; unlike 
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most hybrid and upscaling methods. We showed that despite some dif-
ferences in formulation (e.g., interface balance in MoMsFE versus vol-
ume balance in MsFV), all multiscale methods consist of three steps: (1) 
constructing a local basis, (2) solving a coarse problem, and (3) recon-
structing the fine-scale solution. We noted that step 1 is equivalent to 
upscaling and step 3 to downscaling. If we eliminate step 3, we have a 
classical numerical upscaling method regardless of which multiscale 
method we use. The coarse-scale parameters obtained from each method 
may come in different forms (stiffness in MsFE, transmissibility in MsFV, 
and flux matrix in MoMsFE) but they all contain upscaled information 
about each coarse grid. We also discussed multiscale methods for pore- 
scale problems including PLMM and recent extensions of MsFV. We 
highlighted the algorithmic reason for why PLMM is more accurate. We 
also discussed PNM, one of the earliest pore-scale models, and provided 
a formal interpretation of it as a numerical upscaling method. 
Comparing PLMM and PNM, we highlighted the reasons for why the 
latter incurs larger errors. At the end, we proposed a new framework for 
algorithmically bridging between the pore and Darcy scales without 
ever invoking either Darcy’s law or scale separation. It consists of per-
forming hierarchically nested computations to propagate pore-scale 
information upwards, leaving the option open for downscaling and 
error control. The limitations of the framework were then highlighted 
reflecting a recurrent theme of the paper: the extent to which a set of 
fine-scale equations can be reliably upscaled depends strongly on the 
underlying character of the governing equations (e.g., hyperbolic versus 
parabolic). 

We finally reviewed recent advances in high-resolution imaging and 
discussed how they are changing the way shales, and other geomaterials, 
are being characterized. Images, we argued, are a crucial data type that 
can be used alongside machine learning methods in order to construct 

useful mappings for the purposes of either downscaling or data trans-
lation. They provide much needed inputs upon which the computational 
methods of earlier sections rely. We concluded the paper by considering 
two case studies. The first was about modeling the controlling mecha-
nisms of gas flow through nanopores. We argued that describing the 
physics with a lattice Boltzmann method (LBM) is akin to performing 
numerical upscaling, where a postulated coarse-scale equation (nano-
scale LBM) is parameterized through fine-scale simulations (molecular 
dynamics). The second was a dual continuum model, for which a similar 
interpretation was deduced. 

We hope that this review provides a broader perspective on scale 
translation and engenders a deeper appreciation for how new techniques 
fit alongside, and complement, old ones. It is meant to serve as a useful 
guide to geoscientists who have a vested interest in understanding and 
predicting fluid flow, solute transport, reactions, and mechanical 
deformation across a wide range of spatiotemporal scales in both shales 
and other geologically challenging porous media. 
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Appendix A. Symmetry of Darcy-scale flux matrix 

Consider Ω in Fig. 9c. If we discretize Eq. (44) on the fine grid using the finite volume method and a two-point flux approximation (TPFA) stencil, 
we arrive at the following system 

Ap = b (A1)  

p is the vector of fine-grid pressures and b is the right-hand-side vector. It is well-known that A is a symmetric matrix when Eq. (44) is discretized with 
TPFA. Since ∂Ω consists of three open boundaries, b has the following structure 

b =

⎡

⎢
⎢
⎣

O
T1 × p1
T2 × p2
T3 × p3

⎤

⎥
⎥
⎦ (A2)  

where the entries are arranged in the following order from top to bottom: interior fine grids, fine grids that share an edge/face with Γ1, Γ2, and then Γ3. 
O denotes a vector of all zeros for the interior grids of Ω. pi is the scalar pressure imposed at Γi. Ti is the column vector of fine-grid transmissibilities 
corresponding to Γi. Ti × pi denotes multiplication of a scalar by a vector. To prove that M is symmetric, we have to show qi

j = qj
i. We choose i = 1 and j 

= 2, as others follow identically. The first pressure basis corresponding to p = 1 at Γ1, in Fig. 9c, is obtained by setting p1 = 1, p2 = 0, and p3 = 0 in Eq. 
(A2) and solving Eq. (A1). We thus have 

p1 = A− 1

⎡

⎢
⎢
⎣

O
T1
O
O

⎤

⎥
⎥
⎦ (A3)  

p1 is the first fine-scale pressure basis over Ω. To compute its associated flowrate at Γ2, q2
1, we can simply left-multiply p1 by the row vector shown 

below, where the superscript “T” denotes transposition 

q1
2 =

[
O O TT

2 O
]
A− 1

⎡

⎢
⎢
⎣

O
T1
O
O

⎤

⎥
⎥
⎦ (A4)  
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Eq. (A4) is equivalent to computing the flux at Γ2, by taking the gradient of p1 and multiplying the result by λ, and then integrating the flux over Γ2. 
Notice that since A is symmetric, so is A− 1. Therefore, taking the transpose of both sides of Eq. (A4) leads to the following equality, which completes 
the proof. Recall q2

1 and q1
2 are scalars. 

q1
2 =

⎛

⎜
⎜
⎝

[
O O TT

2 O
]
A− 1

⎡

⎢
⎢
⎣

O
T1
O
O

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠

T

=
[

O TT
1 O O

]
A− 1

⎡

⎢
⎢
⎣

O
O
T2
O

⎤

⎥
⎥
⎦ = q2

1 (A5)  
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