
1.  Introduction
To economically recover the unconventional hydrocarbons stored in shales, the formation needs to be stim-
ulated because of its ultralow permeability. This is accomplished by hydraulic fracturing, which consists in 
injecting a large amount of water-based fluid at high pressure and fracturing the formation. The fracking 
fluid usually contains a number of chemicals which can react with minerals in shales, causing dissolution 
or precipitation (Entrekin et al., 2011; Paukert Vankeuren et al., 2017). Recently, precipitation has become a 
major concern for hydraulic fracturing operators (Vidic et al., 2013). To curb the impact on water resources, 
the wastewater from previous fracturing operations is commonly reused after dilution or pretreatment (e.g., 
in Pennsylvania) (Maloney & Yoxtheimer, 2012). It is important to understand what level of water treatment 
must be achieved for reuse, so that precipitation would not severely impair formation permeability through 
clogging (Vidic et al., 2013). Reactive transport modeling can help to evaluate the impact of precipitation 
on fracture network conductivity and determine the minimum treatment for the wastewater, reducing the 
costs for fracturing operations (Paukert Vankeuren et al., 2017).

Solute transport and reaction in fractured and porous media have been widely investigated in water con-
tamination (B. Guo et al., 2020; Molson et al., 2012; Yeh et al., 2010) and nuclear waste disposal (Fleming 
& Haggerty, 2001; Haggerty et al., 2001). An emerged challenge in modeling reactive transport in fractured 
shales is the multiscale nature of the fracture network. Observations on core samples show that there are 
a large number of microcracks in shales (Ougier-Simonin et al., 2016) of aperture ranging from a few to 
tens of micrometers. These are much smaller than the main fractures induced by hydraulic fracturing op-
erations. Recent experiments have revealed that the microcracks can be entirely clogged by precipitation, 
blocking the pathways from matrix to main fractures in hydrocarbon recovery (Alalli et  al.,  2018; Q. Li 
et al., 2018). Pore-scale modeling can accurately capture precipitation in single fractures (X. Li et al., 2008) 
and submillimeter fracture networks in shales (Soulaine & Tchelepi,  2016). However, as the number of 
fractures increases, explicitly resolving all the fractures can be computationally prohibitive because of the 
nonlinear scaling of computational costs with fracture number.
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Upscaling is commonly adopted to address the multiscale problem. In upscaling, small-scale features are 
described by a model that can be incorporated in large-scale problems. One traditional approach is to model 
small-scale features as an effective medium (Battiato et  al.,  2019): this can be accomplished by the ho-
mogenization method (Hornung, 1996), the volume averaging method (Whitaker, 2013), statistic modeling 
(Kröner, 1986), etc. After upscaling, a fractured medium can be conceptualized as a fracture-matrix system, 
where solute transport in different domains is governed by different physics (e.g., the multirate diffusion 
model) (Haggerty et al., 2001). However, there are physical processes that cannot be accurately upscaled by 
effective medium models. For example, precipitation and dissolution in fractures may lead to nonperiodic 
geometry that cannot be homogenized, which requires pore-scale modeling to capture (X. Li et al., 2008; 
Soulaine & Tchelepi, 2016). In addition, macroscopic governing equations in the form of standard advec-
tion-reaction-dispersion equations may not exist unless a number of restrictions are satisfied (Battiato & 
Tartakovsky, 2011; Boso & Battiato, 2013).

Data-driven approaches have recently been adopted to upscale flow and transport in porous media and frac-
ture networks. Among the data-driven models, deep learning has gained widespread acceptance due to its 
accuracy and flexibility in handling different types of problems (Karpatne et al., 2017). First, deep learning 
models with the architecture of convolutional neural networks can determine upscaled coefficients (e.g., 
permeability and effective diffusivity) directly from pore-scale images, without solving a complex closure 
problem (Kamrava et al., 2020; Santos et al., 2020; Wu et al., 2019). Second, deep learning can replace the 
effective medium model by directly predicting the responses from small-scale features under different con-
ditions. For example, neural networks can predict behaviors of an electrode structure under various battery 
operating conditions (Bao et al., 2020), and forecast oil production from fractured shales without solving the 
macroscopic Darcy's equation (Klie & Florez, 2018).

However, there are two major limitations in data driven modeling of physical processes: one is that the mod-
el may not generalize well outside the available data set; the other is that the model may not be interpret-
able. To overcome these limitations, a paradigm of theory-guided data science has been proposed, which 
introduces physical knowledge in data driven modeling (Karpatne et al., 2017). The paradigm has shown 
promise in many scientific disciplines and recently been applied in water resources modeling (Fleming & 
Goodbody, 2019; Khandelwal et al., 2017). In this work, we propose a hybrid framework, in which reactive 
transport in small-scale features is upscaled by deep learning, while in large-scale features theory-based 
modeling is adopted. The deep learning provides boundary conditions for the theory-based modeling, while 
the theory-based modeling provides input variables for the deep learning, establishing a two-way coupling 
between small-scale and large-scale features. In the framework, the upscaling is performed without relying 
on the existence of macroscopic equations, and the deep learning model shows capability for generalization 
beyond the available data set.

The manuscript is organized as follows. In Section 2 and 3, we present the physical model and the deep 
learning multiscale algorithm. The validation of the algorithm and the results with fracture clogging are 
presented in Section 4. Section 5 contains the conclusions and discussions of this work.

2.  Physical Model
We consider flow of an incompressible Newtonian fluid and transport of a reactive solute in a multiscale 
fracture network (Figure 1). The network is constituted by eight main fractures and 972 microcracks. There 
are three main fractures in the horizontal direction and the rest are connected at 75°, which is designed 
based on hydraulic fracturing experiments (Figure 2a of T. Guo et al., 2014). To represent fracture aperture 
variations observed in the experiments, the horizontal main fracture in the middle and the first and third 
tilted main fractures, counted from the left, are twice as wide as the other main fractures. For microcracks, 
the design is based on synchrotron X-ray microtomography views of shales (Figure 2b of Ougier-Simonin 
et al., 2016) and Scanning Electron Microscopy (SEM) shale images (Alalli et al., 2018). Geometric parame-
ters of the fracture network are listed in Table 1. The idealized fracture network is purposefully 2D to ensure 
that fully resolved pore-scale simulations are still feasible for model validation in such a severely multiscale 
domain. It is worth emphasizing that shales present additional structural and chemical complexity com-
pared to the benchmark model used in this study.
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Pore-scale equations are employed in both main fractures and microcracks. Specifically, fluid flow is de-
scribed by the incompressible Navier-Stokes equations:

   0,u� (1a)




 
      


2( ) ,p

t
u u u u� (1b)

where u(x, t) = (u(x, t), v(x, t), w(x, t)), p(x, t), ρ, and ν are the fluid's velocity, pressure, density, and kinemat-
ic viscosity, respectively. Solute transport is described by the advection-diffusion equation:
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Figure 1.  The multiscale fracture network in which flow and reactive transport are modeled. The fracture network 
contains eight main fractures and 972 microcracks, where a microcrack is defined as a segment connecting two main 
fractures. The red dotted lines mark the microcracks selected for test set generation.

Figure 2.  (a) A 30× 30 cm computer tomography (CT) image of the fracture network in shales after hydraulic 
fracturing experiment (T. Guo et al., 2014). (b) A synchrotron X-ray microtomography view of microcracks, generated 
by gas production during the maturation of organic matter (Ougier-Simonin et al., 2016).
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where c and D are the concentration and diffusivity of the solute, 
respectively.

At fluid-solid interfaces, the solute undergoes a heterogenous reac-
tion and precipitates on the interfaces (X. Li et  al.,  2010; Mourzenko 
et al., 1996):

    ( ) ,D c c Kcn u� (3a)

   ,KcVn u� (3b)

  0,t u� (3c)

where K is the reaction rate constant on the fluid-solid interfaces, V the molar volume of the precipitate, n 
the outward unit normal vector and t the unit tangential vector. Since microcracks are easier to be clogged 
and have much larger fluid-solid interface than main fractures (see geometric parameters in Table 1 for 
quantitative comparison), we focus on reactions in microcracks by assuming K = 0 on the main fracture 
walls. The initial condition for concentration is set to

 ( , 0) 0,c tx� (4)

while the flow is assumed to have already reached steady state when the solute is injected. This hypothesis 
is consistent with the observation that flow reaches steady state much faster than transport. We note that in 
the reactive transport modeling, the mechanical propagation of fractures is not considered. The system can 
be viewed as a domain that has been fractured, but fluid is continuously injected for fracking other regions. 
The presence of hydrocarbons is also not considered, assuming they do not significantly affect reactive 
transport.

3.  Upscaling by Deep Learning
In traditional upscaling approaches, small-scale features are usually represented by an effective medium, 
which needs to be resolved explicitly through the solution of macroscopic equations. In the upscaling meth-
od we developed with deep learning, only large scale features, for example, main fractures, are explicitly re-
solved. All responses from small-scale features are predicted by neural networks based on the state of large-
scale features. Since the system evolves with time, both the input and the output of the neural networks are 
time-series data, which can be well handled by the recurrent neural network (RNN) model. Specifically, the 
RNN takes concentration histories (i.e., concentration breakthrough curves) on the main fracture walls as 
input and predicts the solute mass flux histories on the walls, that is, the diffusive transport from the main 
fractures to the microcracks. Advective transport in microcracks is currently neglected because it is much 
weaker than the diffusive transport due to their size. A flowchart of the algorithm is presented in Figure 3, 
with details described in the following Sections.

3.1.  Recurrent Neural Networks

We employ RNN to model solute transport between main fractures and microcracks. Since each microcrack 
connects two main fractures, two RNNs are constructed to capture solute transport at the two ends of a 
microcrack, respectively. We define an end of a microcrack as the inlet, if it is closer to the fracture network 
inlet, and define the other end as the outlet. Although there may be complex physical and chemical process-
es inside microcracks, mass fluxes at the inlet and outlet are uniquely determined by the inlet and outlet 
concentration boundary conditions. Thus, RNN can predict the mass flux at the inlet or outlet by taking 
both the inlet and outlet concentration as input. We emphasize that the mass flux of the solute is superfi-
cially averaged the same way as in effective medium theories, that is,


 ,

/ ( )
Ff

d sin� (5)
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Geometric parameters Length (mm)

Horizontal main fracture length (L) 51.76

Fracture network width (W) 15.2

Main fracture aperture (H) 0.2, 0.4

Microcrack aperture (h) 0.01

Distance between microcracks (d) 0.1

Table 1 
Geometric Parameters of the Fracture Network
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where F is the mass flow rate of the solute at the microcrack inlet or outlet, d the distance between microc-
racks, and θ the connection angle.

Since both the concentration and mass flux are time dependent, the RNN input is constituted by two-time 
series (concentration histories at the inlet and outlet) and the RNN output is one-time series (mass flux 
history at the inlet or outlet). The RNN contains one input layer, one output layer, and several hidden layers 
(Figure 4). The input layer has two nodes for the inlet and outlet concentration time series; the output has 
one node for the inlet or outlet mass flux series; and there are n hidden layers with m nodes in each layer. 
The hidden layers are computed following the popular RNN architecture long short-term memory (LSTM) 

(Hochreiter & Schmidhuber, 1997), while the output layer is computed by 
a linear transformation of the data in the last hidden layer.

The RNN is implemented by PyTorch, where a built-in function LSTM 
Cell is adopted to compute the nodes in the hidden layers. To train the 
RNN, we choose the L-BFGS optimizer (Liu & Nocedal,  1989), since 
the training set is relatively small and we can load the whole data set to 
train. The optimizer works through the entire data set a number of times 
(number of epochs), updating the internal parameters of RNN to reduce 
the loss function, which is defined by mean squared error. The RNN is 
designed and trained differently for cases with and without microcrack 
clogging because of the different complexity in physics. For the cases 
without clogging, the RNN contains two hidden layers with 51 nodes in 
each layer. The number of epochs is 30 and the learning rate is 0.2. For 
the clogging case, there are four hidden layers with 204 nodes in each 
layer, and the RNN is trained with 300 epochs and 0.05 learning rate. 
The number of epochs is fixed without early stopping techniques because 
overfitting is not significant.
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Figure 3.  The flowchart of the upscaling algorithm by deep learning. More detailed explanation of each step is given 
in Section 3.2.

Figure 4.  A schematic representation of the recurrent neural network 
(RNN) structure. For cases without clogging: m = 51, n = 2; for the 
clogging case: m = 204, n = 4.
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3.2.  Multiscale Modeling

We propose a hybrid framework for modeling reactive transport in multiscale fracture networks. The micro-
cracks are upscaled by RNN as a wall boundary condition of the main fractures, while the main fractures are 
discretized and solved by traditional finite volume method. As demonstrated in the flowchart (Figure 3), the 
multiscale modeling framework has the following steps:

Step 1 System initialization. We start the multiscale modeling by initializing the concentration and velocity 
fields. Note that only the main fracture network is explicitly resolved and only initial conditions in 
main fractures are required as a result. The concentration field is initialized as zero, while the velocity 
field is set to be at steady state.

Step 2 RNN initialization. Since no training data is available yet, the RNN is set to always give zero as output. 
This corresponds to a case with no solute transport in microcracks.

Step 3 Modeling in the main fracture network. Our objective is to solve the concentration field at time tn+1 
using the information from t0 to tn. The velocity field is not updated since it is already at steady state. 
On main fracture walls, a mass flux wall boundary condition is employed, which represents the sol-
ute transport from main fractures to microcracks. At any location x on main fracture walls, the wall 
boundary condition is constructed as follows:

Step 3.1 Find a partner location x′ such that x and x′ are connected by a microcrack. Without loss of gen-
erality, we assume x corresponds to the inlet of that microcrack. If x is located in gaps between micro-
cracks, use interpolation to find x′. If x is located on walls that are not connected by microcracks, set 
the wall boundary condition to be no mass flux.

Step 3.2 Next we compute the current mass flux at x based on the concentration histories at x and x′. The 
concentration histories, c(x, t0), c(x′, t0); c(x, t1), c(x′, t1); …; c(x, tn), c(x′, tn), are already computed in 
previous time steps. The inlet and outlet concentration time series, {c(x, ti)} and {c(x′, ti)}, are fed into 
RNN to predict the current mass flux at x: f(x, tn).

Step 3.3 Obtain the concentration field at tn+1 using the concentration field at tn as initial condition and 
mass flux f(x, tn) as wall boundary condition.

Step 3.4 The concentration field in Step 3.3 is computed explicitly. To improve accuracy, an implicit algo-
rithm is employed: We feed the RNN with concentration time series, c(x, t0), c(x′, t0); c(x, t1), c(x′, 
t1); …; c(x, tn+1), c(x′, tn+1), to predict mass flux f(x, tn+1), then obtain the concentration field at tn+1 
implicitly with f(x, tn+1) as wall boundary condition. Iterate until the concentration field at tn+1 has 
converged.

Step 4 Recording concentration history. We uniformly select a few microcracks and mark the locations of 
their inlets and outlets on main fracture walls, then record the concentration histories at the marked 
locations.

Step 5 Modeling in each selected microcrack. The governing Equation 2 with reactive wall boundary con-
ditions, Equation 3, is solved in a single microcrack. The velocity field in Equation 2 is set to zero 
because the advective transport in microcracks can be neglected, and the concentration field is initial-
ized as zero. A number of simulations are performed independently, with each corresponding to one 
of the selected microcracks in Step 4. The recorded concentration histories serve as inlet and outlet 
boundary conditions in the simulations.

Step 6 Recording mass flux history. Based on results from Step 5, the mass flux histories at the inlets and 
outlets of the selected microcracks are recorded.

Step 7 RNN training. We train new RNN with the recorded concentration and mass flux histories. Go back 
to Step 3 with the updated RNN until the concentration and mass flux histories have converged.

There are several simplifications in the multiscale algorithm proposed here. First, the microcracks are as-
sumed to be geometrically identical. To generalize the algorithm to microcracks with varying apertures 
and lengths, geometric parameters such as microcrack length and aperture can serve as additional features 
in neural networks using data fusion techniques (Castanedo, 2013). Second, advection in microcracks is 
neglected, which can be modeled by including pressure histories on the main fracture walls, following a 
similar procedure. Third, solute transport between microcracks is neglected by assuming the microcracks 
do not intersect with each other. More complex microcrack morphology can be introduced by training RNN 
based on simulations in submillimeter fracture networks (Soulaine & Tchelepi, 2016). We emphasize that 
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although the multiscale algorithm is motivated by reactive transport in 
shales, the method is applicable for other problems such as mineral depo-
sition in hydrothermal systems and precipitation in water contamination. 
We also note that the algorithm can work for dead-end microcracks, in 
which case only one RNN is needed to predict the mass flux at the open 
end.

The deep learning multiscale algorithm is efficient because pore-scale 
modeling is performed only on main fractures and a few selected mi-
crocracks, which occupy only a small portion of the entire domain. The 
trade-off is that RNN training can be computationally expensive. To avoid 
frequent training, we can devise a RNN that can work under various dy-
namic conditions. As an example, we construct a general model that can 
work over a wide range of Péclet number (Pe), defined in Equation 9a. 
We first select a few Pe in the desired range, then solve the corresponding 
cases using the above algorithm. Combining the results, a broader train-
ing set is generated, based on which a general model is constructed. For 
any new cases in the Pe range, we can utilize the general model directly 
without RNN training, which makes the deep learning algorithm even 
more efficient. More details about the general model will be covered in 
Section 4.2.

4.  Results
We employ OpenFOAM to solve the physical model described in Sec-
tion 2. The steady-state flow field is obtained by a preprocess solver of 

Equation 1 using PIMPLE algorithm, and the advection-diffusion Equation 2 is solved by finite volume 
method. The modeling parameters adopted in the following simulations are provided in Table 2. We em-
phasize that the diffusivity is selected based on the diffusivities of common ions presented in hydraulic frac-
turing fluid (Parkhurst & Appelo, 2013; Vidic et al., 2013), and the kinematic viscosity is set to that of water.

In Section 4.1, the deep learning multiscale algorithm is first employed to solve a pure diffusion problem 
in a simplified fracture network with fishbone geometry, which has been investigated in our previous work 
(Wang & Battiato,  2020). Then reactive transport in a multiscale fracture network is considered in Sec-
tion 4.2. Section 4.3 includes the modeling of reactive transport with microcrack clogging.

4.1.  Pure Diffusion

First, we consider a simplified fracture system with fishbone geometry, 
where a main fracture is connected to an array of microcracks on each 
side (Figure 5). We start by modeling pure diffusion without any advec-
tion and reaction, in which case an analytical solution exists. Specifically, 
we take u ≡ 0 in Equation 2 and K = 0 in Equation 3, while adopting the 
following initial and boundary conditions,

 ( , 0) 0,c tx� (6a)

 ( 0, , ) 1,c x y t� (6b)

 ( , , ) 0,c x L y t� (6c)

  ( , / 2 , ) 0,c x y H l t� (6d)

where Equations  6a,  6b,  6c, and  6d represent the initial condition, 
the boundary conditions at the main fracture inlet and outlet, and the 
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Modeling parameters Value

Diffusivity (D, m2/s) 1 × 10−9

Kinematic viscosity (ν, m2/s) 1 × 10−6

Inlet concentration (cin, [C]) 1

Case 1: Pure diffusion

Time step (δt, s) 100

Time domain (0, 50,000 s)

Case 2: Reactive transport

Time step (δt, s) 10

Time domain (0, 50,000 s)

Reaction rate constant (K, m/s) 1 × 10−9

Case 3: Reactive transport with clogging

Time step (δt, s) 10

Time domain [0, 1 × 105 s]

Reaction rate constant (K, m/s) 5 × 10−9

Molar volume of the precipitate (V, [1/C]) 0.1

Table 2 
Modeling Parameters in the Simulations

Figure 5.  A schematic representation of the simplified fracture system 
with fishbone geometry, where 600 microcracks are connected to a main 
fracture. The geometry is adopted in pure diffusion modeling to validate 
simulations against an analytical solution.
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boundary condition at the microcrack outlets, respectively. Since the con-
centration at the microcrack outlets is fixed at zero, only concentration 
histories at the microcrack inlets are fed into the RNN to predict the mass 
flux histories at the inlets. We selected 20 microcracks uniformly along 
the main fracture to collect training data. The RNN, which contains two 
hidden layers with 51 nodes in each layer, is constructed and trained in 
PyTorch.

The deep learning multiscale algorithm is validated against fully resolved 
simulations and a steady-state analytical solution. To make fully resolved 
simulations feasible, the number of microcracks is limited to 600, with 
300 connected on each side of the main fracture. In addition, only the 
upper half is modeled in fully resolved simulations due to the symmetric 
geometry. The main fracture and microcracks are resolved by 300 × 10 
and 10 × 300 grid resolution, respectively, in both multiscale and fully 
resolved simulations. To improve the multiscale modeling efficiency, 
the mass flux wall boundary is updated every 10 simulation time steps 
(tn+1 − tn = 10δt).

Figure  6 presents concentration profiles in the main fracture at differ-
ent times, computed by the deep learning multiscale algorithm, the ful-

ly resolved simulation, and a patch-based multiscale algorithm proposed in our previous work (Wang & 
Battiato, 2020). Both the deep learning and the patch-based multiscale algorithm agree well with the fully 
resolved simulation, and all simulation results recover the steady-state analytical solution:




sinh[( ) 2 / ( ) ] ,
sinh[ 2 / ( ) ]

L x h Hld
c

L h Hld
� (7)

where c  is the cross-averaged concentration in the main fracture. This proves the accuracy of our multiscale 
and fully resolved models. Figure 7 plots the error of the deep learning and patch-based multiscale algo-
rithms, which is defined as the difference between concentration from the multiscale algorithm and fully 
resolved simulations, normalized by inlet concentration. We emphasize that only one iteration is performed 
in the deep learning algorithm, and the results are already more accurate than the patch-based algorithm. 
The reason could be that in the patch-based algorithm, we employ linear interpolation to evaluate gaps be-
tween patches, while deep learning can better capture the nonlinearity with neural networks.
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Figure 6.  Concentration profiles at the centerline of the fishbone 
geometry in the pure diffusion problem, computed by the deep learning 
algorithm (o), the patch-based algorithm (x) (Wang & Battiato, 2020) and 
the fully resolved simulation (solid line), at time instances 1,000 s, 3,000 s, 
10,000 s, and 50,000 s (from light color to dark color). The dotted line is the 
analytical solution at steady state.

Figure 7.  Normalized concentration differences between multiscale modeling and fully resolved simulations 
in the pure diffusion case: (a) deep learning multiscale modeling; (b) patch-based multiscale modeling (Wang & 
Battiato, 2020).
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4.2.  Reactive Transport

In this section, we solve the advection-reaction-diffusion problem in a multiscale fracture network (Fig-
ure 1). We assume the solute consumed in reaction does not cause clogging (e.g., adsorption) and set V = 0 
in Equation 3. The following initial and boundary conditions are adopted:

 ( , 0) 0,c tx� (8a)

  ( 0, 0, ) 1,c x y t� (8b)

 




 , 0
0,

x L y

c
x� (8c)

where Equations 8a, 8b and 8c represent the initial condition, the inlet boundary condition and the outlet 
boundary condition. The velocity field in Equation 2 is set at steady state, which is obtained by solving 
Equation 1 by a preprocess solver under constant inlet and outlet pressure boundaries.

First, we consider a specific case with Pe = 3.29 and Da = 4 × 10−4. The Péclet number (Pe) and Damköhler 
number (Da) are defined as:

 / ,m mPe U H D� (9a)

 / ,mDa KH D� (9b)
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Figure 8.  Concentration histories at (a) inlets and (b) outlets of the four microcracks in the test set, whose inlets are 
located at x = 1.64, 17.94, 34.03, 50.33 mm. The corresponding mass flux histories are plotted in (c) and (d), where 
circles are recurrent neural network (RNN) predictions and solid lines are reference data. The results are obtained 
without any iterations.
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where Um is the maximum velocity and Hm = 0.4 mm is the maximum 
fracture aperture. The Pe value ensures the residence time is in hours, 
which is common in core-scale experiments, while the Da value ensures 
a concentration breakthrough can be observed at the outlet.

The case is solved by the deep leaning multiscale algorithm following the 
steps in Section 3.2. Two RNNs are constructed to predict the mass flux 
at microcrack inlets and outlets, each containing two hidden layers with 
51 nodes in each layer. To generate the training set, 20 microcracks are 
selected uniformly in the fracture network. A test set is also introduced to 
prove that the training set is large enough and that there is no bias or over-
fitting in the training. The test set is generated by selecting four additional 
microcracks in the fracture network, whose inlets are located at x = 1.64, 
17.94, 34.03, 50.33 mm. The first and third microcracks in the test set are 
selected from the bottom half of the fracture network, and the second and 
fourth are from the top half (Figure 1). The testing results are presented 
in Figure 8, where predictions of mass flux histories are marked by circles 
and reference values are plotted by solid lines. We define mass flux to be 

negative if solute transport is from the main fractures to microcracks. At the inlets, where microcracks are 
connected to the middle main fracture, the mass flux is alway negative, while at the outlets, where micro-
cracks are connected to the bottom or the top main fractures, the mass flux may become slightly positive 
before switching to negative. This is because the middle main fracture always feeds solute into microcracks. 
The solute is mostly consumed in microcracks by reaction, but a small portion is able to move through to the 
bottom or top main fractures. Thus, the bottom and top main fractures can receive solute from microcracks, 
causing a slightly positive mass flux. We observe that the coupling between microcrack inlet and outlet as 
well as other nonlinear features can be accurately captured by the deep learning algorithm.

After proving the RNNs are well trained, the deep leaning multiscale algorithm is validated against fully 
resolved simulations. Figure 9 presents temporal snapshots of concentration profiles in the middle main 
fracture. Several iterations are performed in the deep learning multiscale modeling. Similar to the pure 
diffusion case, the error is small even with only one iteration, and the accuracy improves in the second it-
eration (Figure 10). No further improvements are observed in the third iteration, since the training set after 
the first iteration is already representative.

Both the deep learning multiscale modeling and the fully resolved simulation are performed on Intel Xeon 
Gold 6310 processor (2.1 GHz). To make computational time comparable, no parallel computation is im-
plemented, although the training set generation can be easily parallelized due to the independence of the 
data. It takes 416 s to generate the training set, 772 s to train the RNNs, and 333 s to solve the transport in 
main fractures. Compared to the fully resolved simulation, which takes 18,776 s, the speedup factor is 12.3 
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Figure 9.  (a) Temporal snapshots of concentration at the centerline of 
the middle main fracture for the reactive transport case, at time instances 
1,000 s, 3,000 s, 5,000 s, 10,000 s and 50,000 s (from light color to dark 
color).
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Figure 10.  Normalized concentration differences between the deep learning multiscale modeling and fully resolved 
simulations for the reactive transport case: (a) iteration 1; (b) iteration 2.
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if training is included, and 56.4 if a trained RNN is already available. This aspect will be further discussed 
next.

Training new RNNs for every new case is computationally expensive, however, it is possible to train a gen-
eral model that can work under various conditions. Specifically, we construct a deep learning model that 
can work under various Péclet numbers (Pe). We start by considering five specific cases with Pe = 6.58, 3.29, 
1.64, 0.82, 0.41 and solve each case following the steps in Section 3.2. When the training set is obtained with 
one iteration (i.e., go from step 1 to 7, then go from step 3 to 6), we generate a larger training set as the union 
of the training sets of each case, then train RNNs based on the new training set following step 7. The Péclet 
number mainly influences the concentration histories, and by expanding the training set, the RNN can pre-
dict the corresponding mass flux at different Péclet numbers. To validate the general model, we solve cases 
with new Pe = 9.87, 4.93, 0.99, 0.20 and compare the results with fully resolved simulations (Figure 11). The 
good agreement suggests that the general model can work under a wide range of Pe, including both advec-
tion dominated and diffusion dominated regimes. It also shows that the model can not only interpolate but 
also extrapolate over Pe.

4.3.  Reactive Transport with Clogging

We solve the advection-reaction-diffusion problem with microcrack clogging in this section, that is, the sol-
ute consumed by reactions can form layered precipitates on microcrack walls. Equation 2 and Equation 3 
are solved in the multiscale fracture network, under the same initial and boundary conditions given by 
Equation 8. We consider a specific case with Pe = 6.58 and Da = 2 × 10−3. The Pe and Da are selected so that 
most microcracks are fully clogged at the end of the simulation.
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Figure 11.  Temporal snapshots of concentration at the centerline of the middle main fracture for reactive transport 
cases with different Pe: (a) Pe = 9.87, (b) Pe = 4.93, (c) Pe = 0.99, (d) Pe = 0.20. The deep learning results are predicted 
by a general model that can work under various Pe.
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The implementation of microcrack clogging in the deep learning multiscale algorithm is straightforward. 
When modeling reactive transport in selected microcracks (step 5 in Section 3), the geometry is remeshed 
every time step to track the altered wall boundary (see Appendix A for details). Since the mass flux shows 
more complex patterns after clogging is introduced, a deeper RNN (four hidden layers) with more nodes 
(204 nodes in each hidden layer) is employed. The training set is generated by selecting 20 microcracks 
uniformly in the fracture network. To ensure convergence, the training data in the current iteration are 
combined with the data in the previous iteration, which is equivalent to adding a 0.5 relaxation factor. Fig-
ure 12 presents the modeling results: Concentration profiles in the middle main fracture and the bottom 
main fracture are plotted in Figures 12a and 12b, respectively. The dashed and solid lines are before and af-
ter the occurrence of the first complete clogging. We find that precipitation in microcracks can affect solute 
transport in main fractures in two ways. If the precipitation is faster than the transport, one concentration 
front is observed, which propagates as microcracks are getting clogged (Figure 12b). On the other hand, if 
the transport is faster than the precipitation, two concentration fronts are observed: the first front is caused 
by advective transport (dashed lines in Figure 12a), while the second is caused by microcrack clogging, 
which reduces the transport from main fractures to microcracks (solid lines in Figure  12a). The results 
in Figure 12 are obtained after four iterations, when the algorithm has already converged. Concentration 
profiles from previous iterations are also plotted in Figure 13, indicating that the deep learning multiscale 
algorithm converges quickly.

After convergence, the modeling is validated against a test set, which is generated by four microcracks at 
the same locations as in Section 4.2. Concentration breakthrough curves (i.e., concentration histories) at the 
inlets and outlets of these microcracks are presented in Figure 14a and 14b. The mass fluxes predicted by 
RNNs based on these curves, as well as reference data from pore-scale modeling, are plotted in Figure 14c 
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Figure 12.  Temporal snapshots of concentration at the centerline of the (a) middle main fracture and (b) bottom main 
fracture. The dashed and solid lines are before and after the occurrence of the first complete clogging.

Figure 13.  Concentration profiles at t = 20, 000 s for the case with microcrack clogging: (a) in the middle main fracture 
and (b) in the bottom main fracture. The results from the first four iterations suggest a quick convergence.
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and 14d. Figure 15 tracks the evolution of precipitation thickness in a microcrack, whose inlet and outlet 
are both fully clogged durning the simulation. The results suggest the deep learning approach can accurate-
ly upscale reactive transport and clogging in microcracks.

5.  Conclusions
Reactive transport and clogging in microcracks, which cannot be accurately described by traditional effec-
tive medium theory, is upscaled by deep learning. RNN is employed to predict the solute transport between 
main fractures and microcracks based on the concentration histories at microcrack inlets and outlets. In 

multiscale modeling, only main fractures are explicitly resolved while the 
solute transport to microcracks is modeled as a mass flux wall bound-
ary condition, provided by deep learning. The deep learning approach 
is validated against fully resolved simulations and a steady-state analyt-
ical solution. The major conclusions of this work can be summarized as 
follows:

•	 �The results of deep learning multiscale modeling agrees well with 
fully resolved simulations in the entire space and time domain.

•	 �A general model is developed which can work over a wide range of 
Pe, including both advection dominated and diffusion dominated 
regimes.

•	 �In the investigated case, the speedup factor (without parallel com-
putation) is 12.3 if training is included, and 56.4 if a trained RNN is 
available, for example, using a general model. The speedup factor can 
be further improved for parallel implementation and larger fracture 
networks.
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Figure 14.  Concentration breakthrough curves (i.e., concentration histories) at (a) inlets and (b) outlets of the four 
microcracks in the test set, whose inlets are located at x = 1.64, 17.94, 34.03, 50.33 mm. The corresponding mass flux 
histories are plotted in (c) and (d), where circles are recurrent neural network (RNN) predictions and solid lines are 
reference data. The results are obtained after four iterations.

Figure 15.  The evolution of precipitation thickness in the first microcrack 
in the test set, whose inlet is located at x = 1.64 mm.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5 10-6



Water Resources Research

In future works, geometric features of microcracks (e.g., length, aperture) will be included in the deep learn-
ing to generalize the approach. More complex reaction and precipitation models may also be incorporated 
into the deep learning framework.

Appendix A:  Algorithm for Modeling Microcrack Clogging
The clogging in microcracks is modeled by interface tracking method. After the amount of precipitation is 
calculated in each time step, the geometry is remeshed to alter the wall boundary. We start by substituting 
Equation 3b into Equation 3a, which leads to:

    (1 ).D c Kc cVn� (A1)

We march Equation 2 with Equation A1 in a microcrack from tn to tn+1 using the wall boundary position at 
tn. The average concentration between tn and tn+1 is:

  11( ) [ ( , ) ( , )].
2

n n
avgc c t c tx x x� (A2)

Then the increase of precipitation thickness is obtained by multiplying δt on both sides of Equation 3b to 
obtain

  .c avgs K c V t� (A3)

Since the microcrack has a large aspect ratio, we assume precipitation does not significantly change the 
normal direction of the wall boundaries. With this assumption, the new boundary position at tn+1 is tracked 
by Equation A3 and the geometry is remeshed accordingly. To prevent negative aperture, we define a small 
threshold ϵ, which is 0.1% of the microcrack aperture before clogging. The aperture cannot be smaller than 
the threshold during remeshing, and when such a value reached the fracture is considered fully clogged at 
the corresponding locations.

We adopt the clogging module in our previous work (Wang & Battiato, 2020) with the following improve-
ments. First, the u c term in Equation  3a is commonly neglected in the literature when the interface 
velocity u is very small (X. Li et al., 2010; Mourzenko et al., 1996). However, Equation A1 indicates the 
contribution of the u c term is controlled by cV, which may not be neglected even if interface velocity u 
is very small. Hence, we adopt the complete wall boundary condition Equation 3 without neglecting any 
terms. Second, the time step for remeshing was 10 times as the simulation time step in our previous work, 
assuming the fracture aperture alteration is slow. Now the remeshing time step is the same as the simula-
tion step to improve accuracy. Third, the reactive wall boundary condition was realized by “mixed” wall 
boundary scheme in OpenFOAM, which unintentionally changes reaction rate as grid size is changing. 
Now the reactive wall boundary condition is accurately implemented by the “coded mixed” scheme in 
OpenFOAM.

To demonstrate the improvements, we consider a benchmark problem in an isolated microcrack. The mi-
crocrack is uniformly saturated at the initial state, then solute gradually precipitates on the walls. With no 
flow and no mass flux boundary conditions at the inlet and outlet, the problem is analytically described by 
the following volume balance and mass balance equations:


 


2 ,h KcV
t

� (A4a)


 


( ) 2 ,ch Kc

t
� (A4b)

where concentration c and fracture aperture h depend only on time because we assume solute transport 
across the fracture is much faster than reaction due to the small fracture aperture. We compare the simu-
lation results with the analytical solution of Equation A4 in Figure A1. After the improvements, the error 
is reduced to around 1% with the current simulation time step δt = 10 s and can be further reduced to 0.1% 
with δt = 1 s, indicating the present model is accurate.
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Data Availability Statement
All the synthetically generated data are available online (https://doi.org/10.4121/13138502).
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Figure A1.  (a) Precipitation thickness over time in the benchmark problem. (b) Relative error of the simulation results 
compared to the analytical solution.
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