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12.1 introduction: A Question of Scale

Everything should be made as simple as possible but not 
simpler�

A. Einstein

One of the most significant challenges that hydrogeologic mod-
elers continue to face is the “tyranny of scales” [1] in hydrologic 
systems, that is, the disparity of temporal and spatial scales at 
which mass, momentum, and energy transport is best under-
stood (e�g�, subpore to pore scale and seconds to days) and at 
which predictions are needed for practical applications (e�g�, 
plume to aquifer scale and years to centuries) (see Figure 12�1)� 
This is typical in remediation strategies of contaminated sites; 
management of water resources; petroleum, gas, and geother-
mal energy production; and geological CO2 sequestration, which 
require long time predictions over large spatial scales� Achieving 
a predictive understanding of hydrological systems response to 
anthropogenic stressors and environmental changes, and the 
associated risks [2], is a primary societal need since long-term 
strategies to accommodate ever-increasing energy demands, 
to control atmospheric CO2, and to understand nutrient cycles 
need first to be evaluated and then implemented� Modeling 
approaches that incorporate process understanding at differ-
ent temporal and spatial scales, here referred to as multiscale 

models, are therefore necessary to improve our predictive capa-
bilities of natural systems�

While it is recognized that much progress has been made in 
modeling at-scale systems from the pore to the field scale, the 
appropriate level of hydrogeologic model complexity has been 
actively debated in the recent literature [3,4] and continues to 
pose a challenging problem� In particular,

fragmentation of science, technologies, and predictive 
capabilities among disciplines and the focus on studying 
mostly individual, scale-based system components [⋯] 
leads to fundamental uncertainties about how coupled 
subsystems interact with each other and respond to envi-
ronmental changes across different space and time scales� 
The lack of sufficient science-based capabilities to predict 
these interactions and responses hinders the ability to sus-
tainably manage and mitigate energy and environmental 
problems [5]�

As highlighted in a 2007 Department of Energy report [6], an 
opportunity for advancement lies in the development of a new 
generation of “multi-physics capabilities that offer seamless 
modeling of processes over multiple scales�” Yet, the difficulty in 
linking transport processes across scales arises because subsur-
face flow and transport take place in complex highly hierarchi-
cal heterogeneous environments [7–10] and pervasively exhibit 
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nonlinear dynamics and partial or total lack of (temporal and 
spatial) scale separation, that is, physical and biogeochemical 
phenomena on one scale (e�g�, a pore scale) affect, and are cou-
pled to, phenomena on a vastly different scale (e�g�, a field scale)� 
For example, pore-scale molecular diffusion fundamentally 
affects field-scale mixing of (bio)chemically reacting solutes 
[11]� Similarly, strong coupling of flow and reactive transport 
dynamics is critical during CO2 injection into geologic forma-
tions, where the interaction between the fluid and the host rock 
triggers rock structure modifications that can either improve 
or impair its permeability [12–16]� Conversely, local pore-struc-
ture alterations may largely control the injectivity, the pressure 
field dynamics, and CO2 spreading [17]� Other examples include 
radionuclide transport in the subsurface [18] and biogeochemi-
cal processes in the hyporheic corridor that can lead to local 
modification of the porous matrix and its physicochemical 
properties [19]�

For such inherently multiscale systems, the development of 
physics-based models follows a bottom-up approach� Through 
rigorous upscaling techniques, it is possible to construct effective-
medium representations of fine-scale processes with differ-
ent degrees of coupling and complexity [21]� Yet current model 
deployment is generally based on established engineering prac-
tices (and/or experts’ personal experience) and often relies on 
classical continuum descriptions without an a priori evaluation 

of their validity as predictive tools� While the ubiquitous pres-
ence of heterogeneities in natural systems might lead to a local-
ized breakdown of continuum (Darcy-scale) models, in many 
applied disciplines, the transition from theoretical modeling to 
practical applications poses the danger of losing track of mod-
eling assumptions� Resulting failure can be dramatic in both 
social and economic terms, with miscalculation of oil recovery 
rates and contaminant migration [22]� The formulation of rigor-
ous “diagnosis criteria” for the applicability of effective-medium 
representations can help resolve the apparent chasm between 
modelers and practitioners by providing information about the 
scale (e�g�, subpore, pore, Darcy, field) at which effective param-
eters can be most appropriately defined and data collected, while 
guaranteeing that the coarser scale model is employed, wherever 
and whenever possible� Such an approach will help bridge the 
gap between the development of rigorous bottom-up multiscale 
physics-based models and their optimal top-down deployment 
in real-world applications where accuracy and computational 
burden need to be balanced� The proposed linkage between 
rigorous physics-based model development and deployment is 
sketched in Figure 12�2� A critical first step toward the develop-
ment of an integrated multiscale modeling framework that is 
predictive and optimal is the understanding of the interactions 
between physical and biogeochemical processes across multiple 
scales: yet, the accurate coupling of two (or more) models oper-
ating on vastly different spatial and/or temporal scales remains a 
major theoretical and computational challenge�

In this chapter, we review current approaches to incorpo-
rate multiscale dynamics into model development and some 
of the upscaling techniques that can be employed to establish 

Field (formation) scale
(meters to 100’s of meters)

Meso-scale
(10’s of centimeters to meters)

Darcy scale
(millimeters to 10’s of centimeters)

Subpore scale
( <millimeters)

Subpore/interfacial scale
(10’s–100’s of nanometers)

Solid

Fluid

Iron
oxides

Solid

Fluid

FIGURE 12.1 Hierarchy of scales in subsurface systems� (Adapted 
from http: //sbi�oregonstate�edu/news/200903�htm�)

Diagnosis criteria

Physics-based
model development

(rigorous)

Physics-based
model deployment

(optimal)

Bottom-up

Top-down

Level I

Level II

Level III

FIGURE 12.2 Conceptualization of the connection between develop-
ment and deployment of physics-based multiscale models� The missing 
link between model development and deployment is generally the iden-
tification of diagnosis criteria to identify suitable models and model-
ing scales at which continuum-scale quantities and parameters are well 
defined� Hierarchy of scales inset (center)� (Reproduced from Wood, 
B�D�, Adv. Water Resour�, 32(5), 723, 2009�)
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coupling conditions across multiple scales� However, it will 
not cover methods/approaches for scenarios where continuum 
models fail globally, that is, nonlocal models� We refer to [23] 
for a recent and thorough review on nonlocal models� In Section 
12�2, we review some of the most common upscaling methods 
that allow one to derive macroscopic equations from their pore-
scale counterparts� Classical results of homogenization theory 
are also presented� In Section 12�3, we discuss the upscaling of 
reactive systems with emphasis on the formulation of diagno-
sis criteria for the applicability of macroscopic models� Finally, 
Section 12�4 reviews multiscale approaches to modeling reactive 
transport systems with partial and/or total lack of spatial scale 
separation with an emphasis on hybrid multiscale schemes for 
reactive transport and discusses few test cases� The review will 
only touch upon the problem of temporal-scale separation and 
will highlight open questions in the field� Concluding remarks 
are presented in Section 12�5�

12.2  From First Principles to 
effective-Medium equations

Subsurface phenomena are amenable to mathematical descrip-
tions on a multiplicity of scales that range from atomistic to 
continuum� Current modeling approaches can be subdivided 
into continuum (e�g�, Darcy-, field-scale) and pore-scale mod-
els� Pore-scale models (e�g�, Navier–Stokes equations), which 
describe transport processes with a high degree of fidelity, do 
not represent a viable alternative, as they are computationally 
prohibitive and impractical on the field scale since the pore-scale 
geometry is rarely known except for relatively small (e�g�, tens 
of decimeters) lab samples� Macroscopic models (e�g�, Darcy’s 
law for fluid flow and an advection–dispersion equation for 
transport), which treat a porous medium as an “averaged” con-
tinuum, overcome these limitations by relying on phenomeno-
logical descriptions and a number of simplifications (e�g�, spatial 
smoothness of pore-scale quantities, spatial periodicity of pore 
structures, and low degree of physical and chemical heteroge-
neity)� This section presents an overview of common upscaling 
methods used to formally derive continuum-/Darcy-scale equa-
tions from pore-scale (mass, momentum and energy) conserva-
tion laws, and classical macroscale equations governing flow and 
tracer transport at the Darcy scale�

12.2.1 classification of Upscaling Methods

We consider a multiphase system consisting of a solid matrix 
Ωs and an interconnected fluid-filled pore space W�� We define 
W W W:= Ès � and call it a porous medium� The solid–liquid 
interface in Ω is denoted with A�s . A major goal of upscaling 
is to establish connections between pore- and continuum-scale 
descriptions of transport processes in Ω� Some of the mathemat-
ical approaches to upscaling include the method of volume aver-
aging [24,25] and its modifications [26], generalizations of the 
method of moments [27–30], homogenization via multiple-scale 

expansions [31,32], pore-network models [33], and thermody-
namically constrained averaging [34], just to mention a few� A 
comparison between different upscaling methods is discussed 
in [35,36]� A thorough overview on upscaling methods, includ-
ing Martingale methods, stochastic approaches, and projection 
operators, is given in [37]�

Let u be a real-valued scalar function that exhibits rapid spa-
tial oscillations on a pore-scale domain W�� It describes a certain 
physical quantity and satisfies a partial differential equation,

 L{ } ( )u f u= , (12�1)

where L{⋅} is a differential operator, for example, L = ∂t + 
v ⋅	∇	– D0∇2� We emphasize that L{⋅} can be nonlinear [38]� One 
can define the local average of u as

 

u u( ) ( ; )

( )

x y x y

x

= ò1

V
V

d , (12�2)

where x is the centroid of the averaging volume V (x) and 
y ∈ V (x)� In the method of volume averaging, the support vol-
ume V  “is a small, but not too small, neighborhood of point x of 
the size of a representative elementary volume (REV) (several 
hundred or thousand of pores)” [31, p� 1] (see inset in Figure 
12�2)� The ambiguity in defining the size of an REV is typical� 
For example, in [39, p� 15] “the size of the REV is defined by 
saying that it is

• Sufficiently large to contain a great number of pores so 
as to allow us to define a mean global property, while 
ensuring that the effects of the fluctuations from one 
pore to another are negligible (one may take, e�g�, 1 cm3 
or 1 dm3)

• Sufficiently small so that the parameter variations from 
one domain to the next may be approximated by continu-
ous functions so that we may use infinitesimal calculus�”

A discussion on the definition of REV can be found in [40]� 
A continuum-scale equation

 L* { } ( )á ñ = á ñu g u , (12�3)

is constructed by volumetric averaging (12�2) of the original 
pore-scale equation (12�1)� The procedure is facilitated by the spa-
tial averaging theorem, which enables one to exchange spatial 
integration and differentiation [24],

 

Ñ = Ñ + òu u u
1

V
n y

x

d

G( )

, (12�4)

where Г(x) is the liquid–solid interface contained in V (x), that 
is, G( ) : ( )x = ÇA V�s x , and n is the outward normal unit vector of 
Г� A critical step in constructing a macroscopic approximation 
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(12�3) from (12�1) is to perform a Reynolds decomposition of 
pore-scale quantities within any V (x) with x ∈ Ω,

 u u u( ) ( ) ( )x x x= á ñ + � , (12�5)

where 〈u〉(x) is the local average calculated in the centroid of 
the averaging volume and �u( )x  a deviation from the average� 
Combining Reynolds decomposition (12�5) with the spatial aver-
aging theorem (12�4) leads to

 

áÑ ñ = Ñá ñ + á ñ +[ ] Îòu u u u
1

V
V( ) ( ) , ( )

( )

y y n y y x

x

� d

G

� (12�6)

The previous form generally requires two main approximations: 
〈u〉(y) ≈ 〈u〉(x) + y	⋅	∇〈u〉(x) + h�o�t� and � …u f u u» á ñ Ñá ñ( , , ) 
referred to as localization and closure approximations, respec-
tively� We emphasize that such approximations are necessary to 
fully decouple pore- and continuum-scale regardless of linearity/
nonlinearity of the differential operator L� The impact of such 
approximations on the applicability of single-point closure mac-
roscopic approaches is discussed in Section 12�3� A reference book 
on the method of volume averaging is [24]�

Similar concepts are used in thermodynamically constrained 
averaging theory [34], wherein thermodynamics is introduced 
into a constrained entropy inequality to guide the forma-
tion of closed macroscale models that retain consistency with 
microscale physics and thermodynamics�

In the homogeneization theory by multiple-scale expansions 
(see, e�g�, [31]), the volume V  is the unit cell of a periodic porous 
medium Ω with period ε� A homogenized equation is obtained 
by determining the following limit,

 
á ñ = á ñ

®
u ulim e

e 0
, (12�7)

where uε is the sequence (indexed by ε) of solutions of Equation 
12�1 with periodically oscillating coefficients� The limit is deter-
mined by utilizing a two-scale asymptotic expansion that “is an 
ansatz of the form,

 u u u ue e e e e e( ) ( , ) ( , ) ( , ) ,x x x x x x x= + + +0 / / /1
2

2 �  (12�8)

where each function ui(x, y) in this series depends on two vari-
ables, x the macroscopic (or slow) variable and y the micro-
scopic (or fast) variable, and is V -periodic in y (V  is the unit 
period)� A schematic of the procedure is provided in Figure 12�3� 
Inserting the ansatz (12�8) in Equation 12�1 satisfied by uε and 
identifying like-powers of ε leads to a cascade of equations for 
each term ui(x, y)� In general, averaging with respect to y yields 
the homogenized equation for u0� Another step is required to 
rigorously justify the homogenization result obtained heuris-
tically with this two-scale asymptotic expansion” [31, p� 238]�

Similar to the homogenization theory definition of average is 
that of the method of moments, wherein the global (x) and local 

(y) variables “characterize the instantaneous position (configu-
ration) of the Brownian particle in its phase space� Together 
the vectors (x, y) define a multidimensional phase space x ⊕	y 
within which convective and diffusive solute-particle transport 
processes occur” [41, pp� 66–67]� In this case, a macroscopic 
transport equation is obtained for the probability density func-
tion of a Brownian particle [41, eq� 3�3–5]:

 
P t P t

def

( , | ) , , |x y x y y y¢ = ¢( )ò d

V

, (12�9)

where P(x, y, t|y′) ≡ P(x–x′, y, t–t′|y′) with x′ = 0 and t′ = 0 
denotes the “conditional probability density that the Brownian 
particle is situated at position (x, y) at time t, given that it was ini-
tially introduced into the system at the position (x′, y′) at some 
earlier time t′	(t > t′)” [41, p� 68]� “For sufficiently long times (i�e�, 
‘long’ relative to the time scale of evolution of the microscale 
transport process, but ‘short’ relative to the time scale of the 
macrotransport process) we expect that the particle(s) will loose 
memory of the initial position(s) y′” [41, p� 91]� Consequently, 
P t P t( , | ) ( , )x y x¢ »  and a fully macrotransport equation can be 
determined�

A number of other approaches to upscaling are reviewed in 
[41]� Even if based on different definitions of the averaging vol-
ume and on distinct mathematical tools, all upscaling methods 
require closure assumptions and localization approximations 
to fully decouple the average system behavior from pore-scale 
information: the latter is exclusively incorporated into the 
upscaled equation through effective parameters that can be 
determined by laboratory experiments or numerical solution of 
a closure problem at the unit cell level�

Next, we present classical results from homogenization the-
ory applied to flow and transport problems�

1

x y = ε–1x

ε

ε 0

Homogenization limit

FIGURE 12.3 Schematics of a unit cell, the macroscopic domain and 
the homogenization to the continuum limit� The unit cell can be arbi-
trarily complex: it can contain multiple grains of arbitrary shapes�
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12.2.2  Momentum transport: From navier–
Stokes to Darcy-type equations

Single-phase flow of an incompressible Newtonian fluid in the 
pore-space W� of a porous medium is described by the Stokes 
and continuity equations subject to the no-slip boundary con-
dition on A�s :

 mÑ Ñ = Ñ × = Î = Î2v v x v x– , , , ,p s0 0 0W� �A , (12�10)

where v(x) is the fluid velocity, p denotes the fluid dynamic pres-
sure, and µ is the dynamic viscosity�

Upscaling of the Stokes equations (12�10) at the pore scale to 
the continuum scale has been the subject of numerous investi-
gations, including those relying on multiple-scale expansions 
[31,42–45, and references therein], volume averaging [46, and 
references therein], and the method of moments� These stud-
ies have demonstrated that Darcy’s law, which was empirically 
established by Darcy in 1856 [47], and the continuity equation 
for 〈v〉,

 
á ñ = ×Ñá ñ Ñ × á ñ = Îv

K
v x-

m
Wp , ,0 , (12�11)

provide an effective representation of the pore-scale Stokes flow 
(e�g�, [31, Eq� 4�7])� Such upscaling procedures also enable one 
to formally define the permeability tensor K in Equation 12�11 
as the average of a “closure variable” k(y), that is, K = 〈k(y)〉� 
The latter is the unique solution of a local problem (e�g�, [31, pp� 
46–47, Theorem 1�1] and [42, Eq� 22]) defined on a representa-
tive (unit) cell of the porous medium� “It is well admitted that 
the existence of continuum behaviors that are macroscopically 
equivalent to finely heterogeneous media needs a good separa-
tion of scales� If �  and L are the characteristic lengths at the 
local and the macroscopic scale, respectively, their ratio should 
obey” [48]

 
e = �

�
L

1 � (12�12)

To describe flow through “hyperporous” media, Brinkman [49] 
introduced a modification of Darcy’s law,

 
Ñá ñ = á ñ + Ñ á ñp e- m m

K
v v2 , (12�13)

where µe is an effective viscosity “which may differ from µ” [49]� 
The raison d’etre for such a modification was the necessity of 
obtaining an equation that was valid in the high permeability 
limit (|K|→∞) and that allowed for a direct coupling with the 
Stokes equations at interfaces separating Stokes flow (infinite per-
meability regions) and filtration flow (low permeability regions)� 
In Brinkman’s words, “this equation has the advantage of approx-
imating (12�11) for low values of K and (12�10) for high values of K�”

After its introduction and its widespread use, an increasing 
research effort was devoted to the identification of domains of 
validity of both Darcy’s and Brinkman’s law [28,50,51, and refer-
ences therein]� Brinkman’s intuition was mathematically proven 
later by Goyeau et  al� [52] and Auriault et  al� [48], who used, 
respectively, the method of volume averaging and multiple-scale 
expansions to demonstrate that Brinkman’s equation represents 
a higher-order approximation of Darcy’s law when the separa-
tion of scales is poor� Poor-scale separation can be encountered 
in two typical situations�

The first one occurs when the porous medium is mac-
roscopically heterogeneous, when the macroscopic 
characteristic length L associated to the macroscopic 
heterogeneities is not very large compared to the char-
acteristic length ℓ of the pores� For such media, length L 
can be estimated by L ≈ K/|∇K|, where K is the permea-
bility� When the macroscopic gradient of the permeabil-
ity |∇K| is large, the ratio �/L  may not be very small and 
the separation of scale is poor� The second typical situ-
ation corresponds to large gradients of pressure which 
are applied to macroscopically homogeneous media� The 
macroscopic characteristic length L ≈ p/|∇p| associated 
to this gradient of pressure could be not very large com-
pared to ℓ [48]�

In a subsequent work, Auriault [51] defines the applicabil-
ity range of Darcy’s and Brinkman’s equations in terms of the 
geometric parameters of three classes of porous media: classi-
cal porous media characterized by connected porous matrix 
(e�g�,  capillary tubes), swarms of fixed particles with con-
nected pore space, and fibrous media� It is finally concluded 
that the validity domain of Brinkman’s equation corresponds 
to porous media with very large porosity and very small solid 
concentration�

Darcy and Brinkman equations have been demonstrated to be 
quite accurate in describing macroscopic momentum transfer at 
low Reynolds numbers for scales ranging from the nanometer to 
the field scale in a variety of engineering [53–55], hydrology, and 
ecohydrology applications [56–58], just to mention a few (see 
[59] for a review)� The Forchheimer equation (e�g�, [60,61]) and 
its generalizations allow one to include inertia and turbulence 
effects in the momentum balance [60,62]�

Knowledge of the flow field allows one to study transport pro-
cesses at any given scale as described in the following section�

12.2.3  Mass transport: From Diffusion 
to Dispersion equations

The body of literature on upscaling reactive and nonreactive 
transport is extremely rich and its complete review is beyond the 
scope of this section� Instead, we focus on a standard transport 
scenario for the purpose of illustration only� Let us assume that 
the fluid contains a dissolved species M, whose molar concen-
tration c(x, t) [mol L–3] at point x ÎW�  and time t > 0 changes 

D
ow

nl
oa

de
d 

by
 [

St
an

fo
rd

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 1
1:

22
 2

0 
M

ay
 2

01
7 
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due to advection, molecular diffusion, homogeneous reaction in 
the liquid phase, and heterogeneous reaction at the solid–liquid 
interface A�s � At the pore scale, the first three phenomena are 
described by an advection–diffusion–reaction equation,

 

¶
¶

+ ×Ñ = Ñ × Ñ + Î >c

t
c c R c tv D x( ) ( ), ,W� 0, (12�14)

where the molecular diffusion coefficient D is, in general, a pos-
itive-definite second-rank tensor� If diffusion is isotropic, D = 
D0I where D0 [L2T–1] is the diffusion coefficient and I is the iden-
tity matrix� The source term R(c) represents a generic homoge-
neous reaction� At the solid–liquid interface A�s  impermeable 
to flow, mass conservation requires that mass flux of the species 
M be balanced by the net mass flux due to the heterogeneous 
reaction, Q(c):

 – ( ),n D x× Ñ = Îc Q c sA� � (12�15)

In addition to Equation 12�15, flow and transport equations 
(12�10) and (12�14) are supplemented with boundary conditions 
on the external boundary of the flow domain Ω� Regardless 
of the specific upscaling method employed, the upscaling of 
Equations 12�14 and 12�15 leads to effective equations for the aver-
age concentration 〈c〉,

 

¶á ñ
¶

+ á ñ ×Ñá ñ = Ñ × Ñá ñ + á ñ + á ñ Î >c

t
c c c c tv D x( * ) ( ) ( ), , ,R Q W 0  

(12�16)

where D*  is the macroscopic dispersion tensor, and R(〈c〉) and 
Q(〈c〉) are effective reaction terms modeling homogeneous and 
heterogeneous reactions, respectively�

It is worth emphasizing that, since 〈R(c)〉 ≠ R(〈c〉) and 〈Q(c)〉 ≠ 
Q(〈c〉), in general R  ≠ R(〈c〉) and Q ≠ Q(〈c〉) regardless whether or 
not R and Q are linear� The upscaling of advective–reactive pore-
scale transport to advection–reaction–dispersion equations of 
the type (12�16) for different functional forms of the reaction 
rates has been the focus of an incredibly large number of stud-
ies� In these, virtually any upscaling method available has been 
used to derive the macrotransport equations� Recent studies on 
the topic include [35,63–66], just to mention a few� There are also 
numerous generalizations to include multicomponent reactive 
system with linear/nonlinear homogeneous and heterogeneous 
(bio)reactions and various functional forms of R(c) and Q(c) rel-
evant to engineering, chemical, biochemical, hydrological, and 
other applications, for example, [27,29,30,67–71]� Further, while 
generally determined by fitting a solution of the dispersion equa-
tion to data, the dispersion tensor D*  can be formally related to 
a solution of a closure problem in the REV (in volume averag-
ing) or unit cell (in homogenization technique) [65]� Solving a 
closure problem in the REV or in the unit cell has the advan-
tage of predictively relating pore-scale dynamics and geometry 
to macroscopic coefficients� Yet, such an approach has failed to 

describe transport processes in systems with slight departures 
from highly idealized scenarios� This is due firstly to the diffi-
culty of identifying an appropriate unit cell/REV in real rocks 
and soils and, secondly, to the failure of some of the approxi-
mations and assumptions (i�e�, localization approximation and 
closure) necessary to fully decouple macroscopic equations from 
their pore-scale counterparts� Nonlocal models, far beyond the 
scope of this review, overcome some of the limitations of the 
localization approximation through space-time convolution 
integrals, fractional derivatives, etc� [63,72,73]� The identifica-
tion of the applicability conditions of upscaled models based on 
closure assumptions has drawn much less attention� This knowl-
edge is critical to ensure model robustness and predictivity and 
to bound modeling errors� This will be the focus of the following 
section�

12.3 Robustness of Macroscopic Models

While useful in a variety of applications, local continuum mod-
els (e�g�, advection–dispersion–reaction equations or ADREs) 
fail to capture experimentally observed macroscopic trans-
port features, including scale dependence of dispersion tensor 
[74] and reaction coefficients [75], non-Gaussian plumes, mac-
roscale mixing [76], and the onset of instability in variable den-
sity flows [77], to cite a few� ADRE-based models of transport 
of (bio)chemically reactive solutes, which are the main focus of 
this chapter, can significantly overpredict the extent of reactions 
in mixing-induced chemical transformations [69,75,78–80, and 
references therein]� These and other shortcomings stem from 
the inadequacy of either standard macroscopic models or their 
parametrizations or both�

Upscaling from the pore scale, on which governing equations 
are physically based and well defined, to the continuum scale, 
on which they are used for both quantitative and qualitative pre-
dictions, often enables one to establish the connection between 
the two modeling scales� In particular, upscaling approaches 
that rely on characteristic dimensionless numbers (e�g�, the 
Damköhler and Péclet numbers) can provide quantitative mea-
sures for the validity of various upscaling approximations�

12.3.1  Diagnosis criteria for Darcy-Scale 
Models Breakdown

Criteria under which classical macroscopic models accurately 
represent, and are predictive of, pore-scale processes have been 
investigated throughout the years� Auriault and Adler [42] first 
used multiple-scale expansions to establish the applicability 
range of an advection–dispersion equation for tracers in terms 
of Péclet number� Mikelić et al� [43] provided a rigorous upscaled 
version of the Taylor dispersion problem with linear heteroge-
neous reaction� For flow between two parallel reacting plates, 
they established the applicability range of the upscaled equation 
in terms of Damköhler and Peclét numbers� Experimentally, 
[81] investigated how different existing macroscopic models for 
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365Multiscale Models of Flow and Transport

diffusive mass transfer could or could not fit the breakthrough 
curves of double-permeability media for different values of 
Damköhler and Peclét numbers�

Nonlinearity of governing equations complicates the upscal-
ing of most reactive transport phenomena� It requires a lin-
earization and/or other approximations, whose accuracy and 
validity cannot be ascertained a priori� This is especially so for a 
large class of transport processes, such as mixing-induced pre-
cipitation, which exhibit highly localized reacting fronts and 
consequently defy macroscopic descriptions that are completely 
decoupled from their microscopic counterparts [26,42,67]�

12.3.1.1 Dimensionless Formulation

Upscaling approaches that rely on characteristic dimensionless 
numbers (e�g�, the Damköhler and Péclet numbers) can pro-
vide quantitative measures for the validity of various upscaling 
approximations [82–84]� In the following, we illustrate a gen-
eral approach based on the multiple-scale expansion technique 
applied to dimensionless transport equations� It is suited to identi-
fying applicability conditions of any given macroscopic equations� 
This approach allows one to gain physical insight of pore-scale 
processes and their local macroscopic manifestation, if it exists�

Let us start with Equation 12�14, where we set R(c) = 0 and 
Q c k c ca a( ) ( )= - , without loss of generality� Here, k, c , and a 
are the reaction rate, the equilibrium concentration at the pore 
scale, and the order of reaction, respectively� Let us introduce the 
dimensionless quantities

 
ˆ ˆ ˆ ˆ ˆ, , , ,c

c

c L U D
p

p

UL
= = = = =

2

x
x

v
v

D
D �

n
, (12�17)

where D and U are characteristic values of D and v, respectively, 
and ε is defined by Equation 12�12� Further, we define character-
istic diffusion, reaction, and advection time scales, td, tr, and ta� 
Péclet (Pe1) and Damköhler (Da1) numbers are defined as the 
ratio between diffusion (td) and advection (ta) or reaction tr time 
scales, respectively� Specifically,

 
Da and Pe1

1

1: , := = = =
-t

t

Lkc

D

t

t

UL

D
d

r

a
d

a

� (12�18)

Rewriting Equations 12�10 and 12�14 in terms of the dimension-
less quantities (12�17) and the dimensionless time t̂ t td= /  yields 
a dimensionless form of the flow equation in the fluid domain B 
of the unit cell Y (see Figure 12�3),

 e2 2 0ˆ ˆ ˆ , ˆ ˆÑ Ñ = Ñ × =v v- p 0,  (12�19)

subject to the no-slip boundary condition v̂ = 0  on the grain–
liquid interface, Г, and a dimensionless form of the transport 
equation in the fluid domain,

 

¶
¶

+ Ñ × Ñ + =
ˆ
ˆ

ˆ ( ˆ ˆ ˆ ˆ ˆ)
c

t
c c-D vPe1 0, (12�20)

subject to

 - -n D x× Ñ = Îˆ ˆ ˆ (ˆ ), ˆc c aDa1 1 G� (12�21)

For the sake of simplicity, we will drop the hatted notation ×̂( )�

12.3.1.2  Homogenization via 
Multiple-Scale expansions

The method of multiple-scale expansions is based on the ansatz 
that any (dimensionless) pore-scale quantity can be expanded 
into an asymptotic series in powers of ε, for example,

 
c t c tr a

m
m r a

m

( , , , , ) ( , , , , )x y x yt t e t t=
=

¥

å
0

, (12�22)

where y is a fast space variable, τr and τa are two time 
variables,

 
y

x= = =
e

t t, , ,r at tDa Pe1 1  (12�23)

and cm(x, y, t, τr, τa) (m = 0,1,…) are Y-periodic in y, that is, peri-
odic in y with period Y� In Equation 12�23, we set

 Pe Da1 1= =-e ea b, , (12�24)

with the exponents α and β determining the system behavior� 
For example, if Pe1 ≫ 1 (or α > 0) and Da1 ≫ 1 (or β	< 0) then 
advection and reaction dominate diffusion at the pore scale, 
respectively� Substitution of Equations 12�22 through 12�24 in 
Equation 12�20 (and Equation 12�19), while matching ε-like 
orders, leads to a cascade of equations for c0, c1, etc� At the lead-
ing order O(ε–2), one obtains [83, (A�9)]

 c c t r a0 0= ( , , , )x t t � (12�25)

At the order O(ε–1), a solution for c1 can be written in the form

 c t c t c tr a r a r a1 0 1( , , , , ) ( ) ( , , , ) ( , , , )x y y x xxt t c t t t t= ×Ñ + , (12�26)

where c1 is an integration function and the closure variable χ(y) 
satisfies the boundary value problem

 

-Ñ × Ñ + + ×Ñéë ùû ×Ñ

= á ñ - ×Ñ +

-

- -

y y y x

x

D I v

v v

( )

( )

c e c

e f e

a

a b

1
0 0

1 1
0 0 0

c

c K ** c a
0 1-( ) , (12�27)

for y ∈ B subject to 〈χ〉 = 0 subject to

 
- × Ñ + ×Ñ = -( ) Î[ ( )] ,n D I yyc e Gb

x
ac c0 0 1 , (12�28)
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where

 
f = =| |

| |
*

| |

| |
,

B
K

BY
and

G  (12�29)

are porosity and the effective reaction rate, respectively� The 
boundary value problem (12�27) and (12�28) couples the pore 
scale with the continuum scale since χ is influenced by the con-
tinuum scale through the macroscale quantity c0(x) and its gra-
dients� This is incompatible with the hypothesis that χ should be 
only function of y� This inconsistency is resolved by imposing 
appropriate conditions on α and β as outlined in the following�

12.3.1.3  Macroscopic equations and 
Applicability Regimes

The selection of proper α and β ensures that χ is independent 
of c0, that is, χ(y)� In particular, if we chose β	> 0 in the bound-
ary condition (12�28), then the right-hand side (RHS), which is 
of order εβ, can be neglected since ε ≪ 1� Next, we observe that 
for the term ebK * c a

0 1-( )  to be negligible relative to the smallest 
term in Equation 12�27, it is necessary that β	> max{0, 1–α}� Since 
homogenizability of pore-scale advection–diffusion transport of 
a conservative solute requires that α	< 2 [42, Sec� 3�5, Tab� 1], this 
condition yields either β + α	> 1 if α	< 1 or β	> 0 if 1 < α	< 2� 
Therefore, the dependence of χ on ∇xc0 is eliminated by defining 
χ as a solution of the simplified cell problem

 -Ñ × Ñ + + Ñ = á ñ - Îy y yD I v v v y( ) ( ),c e c ePe Pe1 0 1 0 0B B, (12�30)

 – ( ) ,n D Iy× Ñ + = Îc 0 y G, (12�31)

when the following conditions on the order of magnitude of Da1 
and Pe1 are satisfied [83]:

 
Pe

Da

Pe
Da1

2 1

1
1 1< < <e e- , , � (12�32)

Under these conditions, the (sub)pore-scale reactive trans-
port described by Equation 12�20 can be homogenized, that is, 
approximated up to order ε2, with an effective ADRE

 f f e f¶ á ñ = Ñ Ñá ñ á ñá ñ á ñt
ac c c c·( * – ) – * ( – )–D vPe Da 11

1
1K , (12�33)

where 〈c〉 = 〈c0〉 + ε〈c1〉 + O(ε2) is the spatially averaged concen-
tration over a unit cell Y, and ε ≪ 1 is the separation of scale 
parameter, that is, the ratio between characteristic spatial scales 
at the (sub)pore and continuum levels [83]� We emphasize that 
since Pe1 and Da1 are bounded according to Equation 12�32, the 
reaction term will not dominate dispersion� In Equation 12�33, 
K*  and ϕ are the effective reaction rate and porosity, defined in 
Equation 12�29, and

 D D ky x* ( )= á + Ñ ñ + á ñÑI Pe pc e c1 0  (12�34)

is the dispersion tensor� In Equation 12�34, k can be determined 
as the solution of a closure problem for the flow in the unit cell Y 
(details can be found in [83, Eq� 17])�

Conditions (12�32) impose explicit constraints on transport 
processes that admit an accurate effective-medium description 
(i�e�, errors bounded by ε)� The region of validity of ADRE (12�33) 
is fully described by a phase diagram in the (Da1,Pe1)-space: the 
gray region in Figure 12�4 represents a parameter subspace where 
the former constraints are satisfied, while the white area indi-
cates a set of transport processes that violate such bounds� The 
robustness of these constraints has been recently and indepen-
dently verified through 3D pore-scale direct numerical simula-
tions of calcite dissolution [85]�

The phase diagram reveals that transport phenomena 
dominated at the (sub)pore scale by reaction and/or advective 
processes do not lend themselves to macroscopic (upscaled) 
descriptions� These physical processes lead to high concentra-
tion gradients, that is, reactive fronts, at the (sub)pore scale, 
which are not suitable for accurate representation in terms of 
averaged quantities� Under these conditions, the accuracy of 
ADREs, such as Equation 12�33, cannot be ascertained a priori� 
Phase diagrams of the type showed in Figure 12�4 can be used to 
estimate various upscaling approximations�

12.3.2  Adaptive Diagnosis criteria 
for Algorithm Refinement

Reactive transport in the subsurface, for example, complex-
ation reactions, generally involve very complex multicomponent 
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FIGURE 12.4 Phase diagram indicating the range of applicability 
of macroscopic equations for a single component advection–reaction– 
diffusion system in terms of Péclet (Pe1) and Damköhler (Da1) num-
bers [83]� The gray region identifies the sufficient conditions under 
which the macroscopic equations hold� In the white region, macro- and 
microscale problems are coupled and have to be solved simultaneously� 
The different patterns identify different transport regimes depending 
on the order of magnitude of Pe1 and Da1�
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367Multiscale Models of Flow and Transport

reaction networks� The approach described in Section 12�3�1 to 
obtain conditions under which classical local macroscopic mod-
els can accurately describe pore-scale processes has the advan-
tage of generality� As a result, generalization to multicomponent 
reactions is relatively straightforward� However, the applicability 
conditions as formulated in Equation 12�32 are of limited practi-
cal use since they do not provide spatial and temporal adaptivity 
criteria, that is, they do not provide any information of where 
and when continuum-scale models are invalidated� In this sec-
tion, we present and formulate adaptive diagnosis criteria for 
algorithm refinement based on continuum-scale functionals for 
a more realistic reactive system involving three reactive solutes 
(A, B, and C)�

12.3.2.1  Applicability conditions for 
Multicomponent Reactive Systems

Let species A and B undergo a nonlinear homogeneous reaction, 
and species C precipitates on the solid matrix, that is,

 
A B C S

k

k

k

k

ab

c d
( ) ( ) ( )� � �+ ¾ ®¾¬ ¾¾ ¾ ®¾¬ ¾¾ � (12�35)

The system behavior is fully controlled by the Péclet (Pe1) and 
three Damköhler (Daj, j = {1,2,3}) numbers, which quantify the 
relative importance of the four key mechanisms involved in the 
transport process, that is, advection, molecular diffusion, homo-
geneous, and heterogeneous reactions� In particular, Pe1 and Da1 
are defined in Equation 12�18� Additionally,

 
Da and Da2

2

0
3

2

0

= =L k
a

L kab c

D D*, , (12�36)

where a*  is a characteristic concentration value of the reactants 
A and B� Also,

 Da and Da2 3= =e ed g � (12�37)

At the pore scale, the transport equations for the dimensionless 
concentrations a, b, and c are

 ¶ + Ñ × - Ñ + = - +ta a a ab c( )D vPe Da Da1 2 3h , (12�38)

 ¶ + Ñ × - Ñ + = - +tb b b ab c( )D vPe Da Da1 2 3h , (12�39)

 ¶ + Ñ × - Ñ + = -tc c c ab c( )D vPe Da Da1
1

2 3h , (12�40)

where h = c a/ * and c  is the equilibrium concentration at the 
pore scale� The system (12�38) through (12�40) is subject to

 n D n D n D x× Ñ = × Ñ = - × Ñ = - Î >a b c c ta0 0, ( ), ,Da 11 G � 
(12�41)

Following a similar procedure to that outlined in the previous 
section, the pore-scale reactive transport processes described 

by Equations 12�38 through 12�41 can be homogenized, that is, 
approximated up to order ε2, with an effective ADRE
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(12�42)

if the following conditions are satisfied

 

Da

Pe
and Dai

i i< < =e e- -1 2 2 3, { , }, (12�43)

in addition to the bounds (12�32)� The result is a higher dimen-
sional phase diagram sketched in Figure 12�5 [84]�

12.3.2.2 numerical tests

Numerical simulations, both at the pore- and macroscale, can 
be employed to test the robustness of sufficient conditions (12�32) 
and (12�43), or the phase diagram in Figure 12�5� For the sake of 
simplicity, let us consider a pressure-driven flow through a bidi-
mensional fracture Ω = {(x, y): x ∈ (0, 1), |y| ≤ ε} of width 2ε and 
unitary length, with solid boundary Γ = {(x, y): x ∈ (0, 1), y = ± ε} 
(see Figure 12�6a)� We assume that the precipitation/dissolu-
tion process does not significantly affect the interface Γ, and the 
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FIGURE 12.5 Phase diagram indicating the range of applicability of 
macroscopic equations for the advection–reaction–diffusion system 
(12�38) through (12�41) in terms of Pe and Daj(j = {1,2,3})� The grey-scale 
region identifies the sufficient conditions under which the macroscopic 
equations hold� In the white region, macro- and microscale problems are 
coupled and have to be solved simultaneously� The colors identify different 
transport regimes depending on the order of magnitude of Pe and Daj� 
(Adapted from Boso, F� and Battiato, I�, Adv. Water Resour�, 62, 254, 2013�)
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368 The Handbook of Groundwater Engineering

evolution of the solid–liquid boundary needs not to be taken into 
account� For a fracture of width H, the length L is to be interpreted 
as the “observation scale” [43]� In all the numerical simulations, ε: 
= H/L = 6�25 × 10–3 and a = 1�

Two test cases are considered: their parameter values are 
listed in Table 12�1� Example 1 satisfies all the constraints (12�32) 
and (12�43), while Example 2 violates one or more conditions for 
homogenizability� For each scenario, macroscale concentration 
profiles along the fracture 〈ψ〉M, ψ	=	{a,b,c}, obtained by solving 
the continuum-scale system (12�42), are compared with the spa-
tially averaged microscale concentration fields 〈ψ〉m calculated 
by numerical integration of pore-scale concentration profiles ψ 

according to y e y
e

e

m
d= ò( ) ( , )2 1-

-
x y y � Inside the homogeniz-

ability region, the solution of Equation 12�42 is expected to be 
within errors O(ε2) from the averaged pore-scale solution, that 
is, 〈ψ〉m = 〈ψ〉M + O(ε2), or the absolute error Eψ = |〈ψ〉m–〈ψ〉M| 
≈ O(ε2)�

In Figure 12�7, we present a scenario of multicomponent 
reactive transport (described by Equation 12�35) through a 

planar fracture where the second of the applicability condi-
tions (12�32) is violated (Test Case 3 of [84])� For such a sce-
nario (Example 2), the continuum-scale solution is not able 
to describe pore-scale processes within the expected accuracy, 
that is, the accuracy prescribed by the upscaling procedure� 
Instead, when no conditions are violated (Example 1, Figure 12�8), 
the errors are bounded by ε, as predicted by homogenization 
theory [84, Test Cases 1 and 2]� This suggests that the constraints 
derived through homogenization are robust in identifying suf-
ficient as well as necessary conditions for homogenizability.

12.3.2.3  Adaptive Diagnosis criteria for 
Multicomponent Reactive Systems

The applicability conditions identified by Equations 12�32 and 
12�43 are not space-time dependent, that is, for any prescribed 
reaction network and physical system, Pe1 and Dai, i = {1,2,3}, 
are fixed� Instead, we define modified Pe1 and Da1 based on 
continuum-scale velocity and concentration, that is,

 
Pe and Da t11

0 0

1( ) ( ) ( , ) ( , )x v x x x= á ñ = á ñL

D

Lk

D
c ta - � (12�44)

We emphasize that in Equation 12�44 both macroscale veloc-
ity and concentration are dimensional� If the exponent 
a t= 1 1, ( , ) Da x  can be defined in terms of the dimensionless 
macroscale concentration instead� If at least one of the following 
inequalities,
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2 1

1
1 1( , )
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( , )x

x

x
xt

t

t
t> > >e e- , (12�45)

is satisfied at any space-time location (x, t), then at least one of 
the constraints (12�32) is violated, since 〈v〉(x) ≤ v(y; x) and 〈c〉
(x, t) ≤ c(y, t; x) for any y ∈ V (x)� The constraints (12�45) pro-
vide rigorous time-space dependent criteria to identify regions 
in a computational domain, where local breakdown of ADRE 
may occur, the ADRE solution may not be accurate and pore-
scale models should be used instead� The bounds (12�45) can 
be straightforwardly generalized to multicomponent reactive 
transport for any specific reactive system of interest� For the 
reacting system described by Equation 12�35, the following con-
ditions (in addition to Equation 12�45) must be verified for an 
algorithm refinement (i�e�, the employment of a more accurate 
model such as pore-scale simulations) to take place

 

Da

Pe
or Dai

i
t

t
t i

( , )
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1 2 2 3> > =e e- - , (12�46)

where, for example, Da /2
2

0= á ñL k a t Dab ( , )x  and Da3
2= á ñL k cc

( , )x t D/ 0� We employ the proposed adaptivity criteria to the test 
case for the multicomponent reactive transport problem, pre-
sented earlier, where the continuum-scale model fails globally 

y
2ε

1

U

x

1
x

(a)

(b)

FIGURE 12.6 Sketch of the simulation domains where all the spatial 
scales are nondimensionalized by L, the fracture length� (a) Pore-scale 
(2D) fracture with fully developed parabolic velocity profile� Species A 
(in red) and B (in blue) occupy the left and right portion of the fracture, 
respectively� The reaction front is localized in the fracture center� (b) 
Macroscopic (1D) representation of the fracture� (Adapted from Boso, 
F� and Battiato, I�, Adv. Water Resour�, 62, 254, 2013�)

TABLE 12.1 List of Parameters for Examples 1 and 2, Inside 
and Outside of the Applicability Regimes, Respectively

 Example 1 Example 2 

α 1 1/2
β 1/4 1/4
γ −1 −1
δ −1 −1
α + β 5/4 3/4
α + γ 0 −1/2
α + δ 0 −1/2

Note:	 The	 boldface	 notation	 indicates	 the	 constraints	 that	
has	been	violated.
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369Multiscale Models of Flow and Transport

(see Figure 12�9)� Figure 12�9 shows that the adaptivity criteria 
based on space-time continuum-scale functionals (12�45) and 
(12�46) provide an accurate (and not too conservative) estimate 
of where an algorithm refinement is needed, that is, when the 
errors overcome those predicted by homogenization theory� 
While alternative criteria could be formulated (e�g�, based on 
macroscopic concentration gradients [82]), the adaptivity criteria 

(12�45) and (12�46) have the advantage of being self- consistent 
with the upscaling procedure employed to construct the contin-
uum-scale models themselves�

Having criteria to identify subdomains where continuum-
scale equations break down, we can proceed by formulating a 
hybrid model� Before doing that, we review the state-of-art on 
multiscale methods in the following section�
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FIGURE 12.7 Example 2� Snapshot of 〈ψ〉M (solid lines) and 〈ψ〉m (dashed lines) with ψ = {a,b,c} at time t = εα� (a) Longitudinal concentration 
profiles 〈ψ〉M and 〈ψ〉m obtained from either solving the macroscale system of Equations 12�42 or averaging the pore-scale concentration profiles, 
respectively� (b) Absolute error along the fracture Eψ(x) = |〈ψ〉m(x)–〈ψ〉M(x)|� Horizontal lines identify different orders of magnitude of the absolute 
error in terms of integer powers of ε� (c) Concentration maps in a portion of the fracture, x ∈ [0�2, 0�3] and y = [–ε, ε], for species A (top), B (middle), 
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FIGURE 12.8 Example 1� Snapshot of 〈ψ〉M (solid lines) and 〈ψ〉m (dashed lines) with ψ = {a,b,c} at time t = εα� (a) Longitudinal concentration 
profiles 〈ψ〉M and 〈ψ〉m obtained from either solving the macroscale system of Equations 12�42 or averaging the pore-scale concentration profiles, 
respectively� (b) Absolute error along the fracture Eψ(x) = |〈ψ〉m(x)–〈ψ〉M(x)|� Horizontal lines identify different orders of magnitude of the absolute 
error in terms of integer powers of ε� (c) Concentration maps in a portion of the fracture, x ∈ [0�2, 0�3] and y = [–ε, ε], for species A (top), B (middle), 
and C (bottom) around the original concentration discontinuity x = 0 25. � (Adapted from Boso, F� and Battiato, I�, Adv. Water Resour�, 62, 254, 2013�)
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12.4 Multiscale and Hybrid Methods

Current deterministic modeling approaches to subsurface flow 
and transport can be subdivided into pore- and continuum-scale 
models� While pore-scale models enable one to describe relevant 
processes with a high degree of fidelity, they are impractical for 
simulations at scales larger than a small core due to both high 
computational costs and the lack of detailed information about 
the pore geometry in the whole computational domain� Despite 
recent advances in computational methods that allowed fully 
pore-scale numerical simulations of decimeter-scale samples [86], 
heterogeneity of most natural porous media and prohibitive com-
putational burden render Lattice Boltzmann modeling, smoothed 
particle hydrodynamics, and other pore-scale simulations 
impractical as a predictive tool at the field scale� Continuum mod-
els, which treat a porous medium as an “averaged” continuum, 
overcome these limitations at the cost of relying on phenomeno-
logical descriptions� As previously discussed, they fail to predict 
processes characterized by poor (momentum, mass, heat) mixing 
at the pore scale, that is, in the presence of high pore-scale gra-
dients� ADE-based models of transport of (bio)chemically reac-
tive solutes can significantly overpredict the extent of reactions in 
mixing-induced chemical transformations both at the Darcy and 
field scales [78,87,88, and references therein]� As a result, labora-
tory-scale measurements of reaction rates in fully-mixed reactors 
cannot be directly used for field-scale predictions; instead, field-
scale model parameters must be calibrated, which raises questions 
about their applicability for prediction under conditions other 
than those for which the calibration was performed�

Leading experts in the field of multiscale mathematics and 
simulation have recently pointed out the need for a unified 
framework for multiscale simulation that can provide guide-
lines regarding how to utilize various multiscale simulation 
approaches [89]� To the best of our knowledge, the multiscale 
analysis platform proposed by Scheibe et  al� [90] represents 
one of the first organic attempts in that direction (see also [91]) 
and emerges as a response to the urging need of practitioners 
to select the most appropriate hybrid multiscale framework for 
their specific application� The classification scheme is presented 
in terms of a flow chart with different motifs of hybrid multi-
scale simulation of flow and transport in the subsurface� Yet, the 
critical point in the flow chart is the identification of the “degree 
of coupling” (Question 2, [90]) between fine- and coarse-scale 
models (e�g�, pore and Darcy, or Darcy and field scale)� While 
many authors have recognized the limiting assumptions under-
lying continuum-scale models [20,75,81,92–94], no general 
means of quantifying the degree of coupling exists� In the previ-
ous sections, we have showed how upscaling of dimensionless 
fine-scale equations can serve for this purpose, as it allows one 
to relate the accuracy of continuum representations of fine-scale 
processes with the order of magnitude of relevant dimensionless 
numbers, which control the time scales of basic transport phe-
nomena (e�g�, diffusion, dispersion, advection, reaction)� The use 
of such criteria to adaptively diagnose where, and when, an algo-
rithm refinement is needed, provides a self-consistent framework 
(with upscaling techniques) for top-down model deployment�

The search for ways to combine the physical rigor of pore-
scale modeling with the computational efficiency of its 
 continuum-scale counterpart and to model phenomena where 
the small-scale processes significantly affect large-scale behavior 
(e�g�, material deposition, fracture dynamics) has motivated the 
development of hybrid pore-scale/continuum-scale algorithms, 
for example, [95,96], and multiscale approaches, for example, 
[89,97–103]�

It is important to distinguish hybrid algorithms from multi-
scale numerical approaches that are based on empirical closures 
[100], upscaling methods [97] and/or assumed macroscopic 
behavior of microscopic variables [104]� Multiscale algorithms 
employ “effective” representations of pore-scale processes, which 
share many approximations and assumptions with continuum 
models� For example, they employ pore-scale simulations to 
improve the estimate of continuum-scale effective parameters� 
On the other hand, hybrid algorithms assume a local breakdown 
of continuum-scale representations and, consequently cannot 
rely on any of the assumptions on which the latter are based in 
order to formulate the coupling between the two scales�

When a global breakdown occurs, alternative modeling tech-
niques for non-Fickian transport should be employed instead� 
A recent and comprehensive review, discussing nonlocal mod-
els such as continuum time random walks [7,105], fractional 
derivatives [106], and memory function [21,107] approaches, is 
given in [23]�

Hybrid models provide significant computational speed-
up when the subdomain Ωp wherein pore-scale simulations 
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FIGURE 12.9 (a) Snapshots of longitudinal macroscopic concentra-
tion y, ψ = {a,b,c}, of species A, B, and C in a planar fracture with reac-
tive walls, obtained from either solving the continuum-scale equations 
(solid lines) or averaging the microscale concentration (dashed lines)� 
(b) Absolute error Eψ along the fracture between continuum- and aver-
aged pore-scale solutions� The adaptive criteria proposed in Equation 
12�46 (dashed black line) strongly correlates with Eψ� (Adapted from 
Boso, F� and Battiato, I�, Adv. Water Resour�, 62, 254, 2013�)
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are required (i�e�, wherein continuum models become invalid) 
is much smaller than the total computational domain Ω� The 
inequality [108,109],

 

W
W W

pc

p

pc

p

C

C-
�1 ,

provides a more precise formulation of this statement� Here ||Ω||, 
||Ωp||, and ||Ωpc|| are the volumes of Ω, Ωp, and the “handshake” 
region Ωpc wherein both continuum and pore-scale simulations 
are coupled, respectively, and Cp and Cpc are the computational 
costs per unit volume for pore-scale and coupling simulations, 
respectively� This condition takes advantage of the fact that the 
computational cost of continuum-scale simulations is much 
smaller than that of pore-scale simulations� As pointed out in 
[108], a hybrid algorithm is beneficent “even if the algorithmic 
interface is computationally more expensive than either algo-
rithm, as long as the interface region and the region using the 
more expensive method are each small fractions of the total vol-
ume�” The latter condition is satisfied in highly localized flow 
and transport phenomena, such as flow and transport to/from 
point sources, and propagation of reactive fronts� Tools for iden-
tifying the regions wherein continuum models break down, Ωp, 
are developed in Section 12�3�2�

Various methods have been developed to attack these types of 
scenarios in the context of subsurface hydrology and transport 
processes� To our best knowledge, the first algorithm refinement 
method for diffusive systems has been proposed by [108,110], 
where a hybrid particle/continuum algorithm is formulated 
for Fickian diffusion and the problem of noise propagation in 
hybrid simulations is addressed� The particles are taken as inde-
pendent random walkers and the fluctuating diffusion equation 
is solved by finite differences with deterministic and white-noise 
fluxes� Similarly, hybrids for reaction–diffusion systems couple 
molecular dynamics (MD) and kinetic Monte Carlo simulations, 
MD and reaction–diffusion equation, and Lattice Boltzmann 
and reaction–diffusion equation, that is, [95,111,112]� Smoothed 
particle hydrodynamics (SPH) was used to incorporate moving 
boundary effects due to precipitation processes at the pore scale 
[96]� An advantage of SPH over MD lies in requiring a signifi-
cantly smaller number of particles (and consequently smaller 
computational costs) to properly model the hydrodynamics of 
a continuum fluid: this derives from the mesoscopic nature of 
SPH particles: They are in fact, a collection of MD particles� 
However, if the Lagrangian particle nature of SPH allows physi-
cal and chemical effects to be incorporated into the modeling 
of flow processes with relatively little code-development efforts, 
additional complications might arise in the formulation of the 
coupling boundary conditions in the presence of advection: each 
particle (both at the pore and continuum scale) moves in space 
with its own velocity (Stokes or Darcy) and coupling based on 
superposition of particle spheres of influence becomes unclear� 
To overcome this complication, [113] proposed an Eulerian hybrid 
framework� Such a hybrid formulation is intrusive (embedded) 

since the upscaled equation has to be modified to incorporate 
pore-scale effects [113]� The presence of an overlapping region 
in embedded hybrids requires one to modify existing numeri-
cal codes used to conduct both pore- and continuum-scale 
simulations� Since compatibility with existing codes is a desir-
able feature of hybrid algorithms, [114,115] have developed non-
intrusive hybrids in which the overlapping (handshake) region 
is eliminated� This is accomplished by formulating appropriate 
conditions at the interfaces separating the two computational 
subdomains, while ensuring the continuity of state variables 
and fluxes� Within this framework, fine-scale simulations affect 
a continuum-scale solution through boundary conditions only� 
While the nonintrusive formulation requires a larger pore-scale 
domain compared to that needed by embedded hybridization, 
the former allows one to take advantage of mismatching grids 
between the pore- and continuum-scale domains�

Mortar methods (and their subsequent generalizations) allow 
one to account for multiphysics dynamics within a single mac-
roscopic domain where continuity of fluxes and state variables 
is enforced between adjacent subdomains through an iterative 
procedure [116–118]� Application of mortars for hybrid multi-
scale simulation of subsurface processes has been pioneered by 
[119–122] and consist in coupling pore-scale network models 
with macroscopic models� Yet, the employment of pore-scale 
network models assumes that the system is well mixed at the 
pore scale� This may not be an accurate assumption especially 
across sharp reacting fronts whose width can span only few tens 
of grains [80]� To address this issue, new capabilities in mortar 
coupling have been recently developed [123], which by an ad hoc 
procedure allow one to account for different subpore-scale mix-
ing scenarios� The first implementation of mortar approaches 
that did not employ any parametrization of subpore-scale mix-
ing was implemented for a bioreactive–diffusive system [124] 
where Darcy-scale equations were directly coupled to fully pore-
scale models�

It is worth emphasizing that multiscale and hybrid algo-
rithms share a similar motivating ground, their imple-
mentation is inextricably intertwined with the numerical 
discretization scheme employed in any specific approach and 
method, so that a unifying organic representation/description 
of coupling conditions or convergence schemes is unfeasible� 
Often times, in fact, the coupling is purely numerical with lim-
ited physical insight�

For the purpose of demonstration only, we will focus on one 
approach that can be used to determine coupling conditions 
when a continuum-scale model fails locally� In the following, 
we will focus on coupling formulations that, based on upscal-
ing methods (e�g�, volume averaging), retain a strong physics 
flavor� In particular, we will focus on two coupling schemes: 
embedded (Section 12�4�1) and nonintrusive (Section 12�4�2) with 
or without overlapping between the pore- and the continuum-
scale domains, respectively� Finally, we will conclude with a case 
study (Section 12�4�3)� We think this represents a natural conclu-
sion to a chapter devoted to the theory and numerics of multi-
scale dynamics�
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372 The Handbook of Groundwater Engineering

Otherwise, we refer to [90] for a thorough review of multiscale 
and hybrid approaches in subsurface hydrology, with a rich list 
of technical references for the interested reader�

12.4.1 embedded Schemes

To set the basic ideas of hybrid modeling, we consider advec-
tive-diffusive transport in a fully saturated porous medium 
ΩT� Within the pore space W Wpore

T TÌ , single-phase flow of an 
incompressible fluid is described by the Stokes and continuity 
equations� Flow equations are subject to the no-slip boundary 
condition on the solid–liquid interface A�s , which is taken to be 
impermeable to flow� The flow is driven by boundary conditions 
imposed on ∂ΩT, the external boundary of ΩT� The fluid con-
tains a dissolved species with molar concentration c(x, t) that 
is advected and diffused in Wpore

T � The evolution of the concen-
tration c(x, t) of a tracer undergoing advection and diffusion is 
described by

 

¶
¶

+ Ñ × = Ñc

t
c c( ) ,v D 2  (12�47)

subject to a flux boundary condition on the solid–fluid interface A s�

 - × Ñ =n D Kc c , (12�48)

and proper boundary conditions on ∂ΩT�
We focus on transport regimes in which the validity of the 

continuum-scale transport equation (12�50) breaks down in a 
subdomain W Wp

TÌ pore (with boundary ∂Ωp) of the computa-
tional domain (see Figure 12�10)� Under such transport condi-
tions, the spatial averaging of Equation 12�47 in Ωp yields an 
integro-differential equation [113]

 
f ¶á ñ

¶
= áÑ × Ñ ñc

t
c c( )D - v  (12�49)

rather than a standard advection-dispersion equation

 
f f¶á ñ

¶
+ Ñ × á ñá ñ = Ñ × Ñá ñ á ñc

t
c c c( ) ( * ) *v D - K , (12�50)

where 〈v〉 is the average macroscopic velocity,  D*  is the disper-
sion coefficient, and K*  is the effective reaction rate� Violation of 
some of the sufficient conditions for applicability of macroscale 
models identified in Section 12�3 [82,83] prevents the averaging 
integrals in Equation 12�49 from being converted into the cor-
responding terms for the macroscopic (average) concentration 
〈c〉 in Equation 12�50� The averaging in Equation 12�49 is defined 
over V (x* ) ≡ Ωp(x* ) and x*  is the centroid of Ωp, that is, the sub-
domain Ωp shrinks to a point x* ∈ ΩT (see Figure 12�10)� Similarly, 
the averaging in Equation 12�50 is defined over V (x) with x ∈ ΩT 
and x ≠ x* � According to Gauss’ theorem, Equation 12�49 can be 
written as

 

f
f f

¶á ñ
¶

= ò òc

t
q s c s

p
n

p
s

- -1 1

W W
G G

d d

�� �

K , (12�51)

where G G Gp s= È�� �  is the bounding surface of Ωp consisting 
of liquid–liquid ( )G��  and solid–liquid ( )Gs�  segments and ds 
is an infinitesimal element of Γp� Also, qn = n	⋅	(–D∇c + vc) is 
the unknown pore-scale mass flux (or flux density) through 
the liquid–liquid portion of the boundary Γp� The RHS of 
Equation 12�51 depends on pore-scale quantities and repre-
sents the coupling term between pore and continuum scale� 
Such a hybrid formulation is intrusive (embedded) since the 
RHS of Equation 12�49 has to be modified to incorporate pore-
scale effects as indicated in Equation 12�51 when x = x*, that is, 
the full pore-scale problem (12�47) must be solved in Ωp(x*)� 
For x ≠ x*, the standard macroscale equation (12�50) can be 
employed instead�

In summary, the hybrid pore-scale/continuum-scale algo-
rithm contains the three unknowns (c, 〈c〉, qn) that satisfy a sys-
tem of coupled partial-differential equations,

 

f f

W

¶á ñ
¶

+ Ñ × á ñá ñ = Ñ × Ñá ñ - á ñ

Î ¹ >

c

t
c c c

tT

( ) ( * ) * ,

, *, ,

v D

x x x

K

0  (12�52)

 

f
f f
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d
d d ,

á ñ = = >òòc

t
q c t

p
n

p
s

1 1
0

W W
GG

x x x x- K *, ,

���

 (12�53)

 

¶
¶

+ Ñ × = Ñ Î >c

t
c c tp( ) , ( *), ,v x xD 2 0W  (12�54)

 n v x× Ñ - = Î >( ) , , ,D c c q tn G�� 0  (12�55)

∂ΩT

ΩT

∂Ωp

Ωp x

(x)

FIGURE 12.10 A schematic representation of the pore- and contin-
uum-scale domains and the averaging procedure leading to intrusive 
(embedded) hybridization: the subdomain where continuum-scale rep-
resentation breaks down is depicted in gray; its boundary is ∂Ωp�
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 - × Ñ = Î >n xD Kc c ts, , ,G � 0  (12�56)

supplemented by boundary conditions on the external domain 
∂ΩT and initial conditions� The former system of equations can 
be solved using an iterative procedure as sketched in Figure 12�11� 
We emphasize that Equations 12�53 and 12�54 are solved at the 
continuum and pore scales in overlapping domains as showed 
in Figure 12�11� The iteration starts by guessing the value of the 
unknown flux qp (Step 1)� This allows one to solve the pore-scale 
problem in Ωp, Equations 12�54 through 12�56, and determine 
the RHS of Equation 12�53 (Step 2)� Then Equations 12�52 and 
12�53 can be solved for the continuum-scale concentration and 
the fluxes at the boundary calculated from numerical differen-
tiation and can be compared with the initial guess (Step 3)� The 
initial guess is then refined until convergence is achieved�

The presence of an overlapping region in embedded hybrids 
requires one to modify existing numerical codes used to conduct 
both pore- and continuum-scale simulations� Even though this 

intrusive formulation is general and can be applied to a variety 
of different numerical schemes, its implementation in legacy 
codes, in which discretized equations cannot be easily modified 
by the user, is challenging�

12.4.2 nonintrusive Schemes

A desirable feature of a hybrid algorithm is its portability and 
implementation in existing codes� This can be accomplished by 
eliminating the overlapping (“handshake”) region and formu-
lating appropriate conditions at the interfaces separating the 
two computational subdomains, while ensuring the continuity 
of state variables and fluxes� Within this framework, pore-scale 
simulations affect a continuum-scale solution through bound-
ary conditions (and not as a modification of continuum-scale 
discretized equations): this will facilitate hybrid implementation 
for existing codes and/or software�

12.4.2.1 Derivation of coupling Boundary conditions

Again, we are concerned with transport regimes in which the 
validity of the continuum-scale transport equation (12�50) 
breaks down in a subdomain W Wp pore

TÌ  with boundary ∂Ωp of 
the computational domain Ω� We define Γ to be the locus of the 
centers of the family of the averaging volumes V (x), whose enve-
lope is ∂Ωp as shown in Figure 12�12� We denote Wp  the domain 
bounded by Γ� Let A As p s

T
� �= ÇW �

Let 〈c〉← denote the limiting value of 〈c〉(x) as x →	x← ∈ Γ from the 
exterior of Wp , and 〈c〉→ = 〈c〉(x→) as x →	x→ ∈ Γ from the interior 
of Wp , where the averages are defined over the supports V (x←) and 
V (x→), respectively� Since average concentration is a continuous 
function everywhere in Ω, it is continuous across Γ [114]

 
c c

¬ ® ® ¬= - ®for | |x x 0� (12�57)

Let V Vin
p( ) : ( )x x= Ç W  and V out(x): = V (x)\V in(x) to form a par-

tition of V where pore scale is explicitly resolved and where only 
a continuum-scale representation exists, respectively (see Figure 
12�12)� Then Equation 12�57 can be written as

 

c c c
in out

¬ = +
® ®

ò ò1 1

f fV V
V V

( ) ( )

( ) ( )

y y y y

x x

d d � (12�58)

Expanding c(y) into a Taylor series around the centroid x and 
retaining the leading term yields

 

c cout

out

dy x x

x

» ® ® ®

®
ò V

V

( ) ( )

( )

� (12�59)

Inserting Equation 12�59 into Equation 12�58, one obtains
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FIGURE 12.11 Steps of a hybrid algorithm� Step 1: The iteration starts 
by guessing the value of the unknown flux qn on the boundary shared 
by the pore-scale and continuum-scale domains� Step 2: This initial 
guess allows one to solve the pore-scale problem in Ωp, Equations 
12�54 through 12�56, and determine the RHS of Equation 12�53� Step 3: 
Equations 12�52 and 12�53 can be solved for the continuum-scale con-
centration and the fluxes at the boundary calculated from numerical 
differentiation and can be compared with the initial guess� The initial 
guess is then refined until convergence is achieved�

D
ow

nl
oa

de
d 

by
 [

St
an

fo
rd

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 1
1:

22
 2

0 
M

ay
 2

01
7 



374 The Handbook of Groundwater Engineering

Following a similar procedure, a flux continuity condition is 
expressed as [114]

 

n D v n v y

x

× Ñá ñ + á ñá ñ = × - Ñ + +¬ ¬

®
ò( * ) ( )

( )

- c c c c q
in

nf 1

V
D

V

d , 

(12�61)

where

 

q c cn

out

( ) :
| |

( )

( )

x n v y

x

= × - Ñ +ò1

V
D

V

d  (12�62)

is an unknown flux through Γ� This flux serves as a coupling 
condition at the interface between pore- and continuum-scale 
subdomains�

The final form of the coupled system of equations for the non-
intrusive hybrid algorithm is

 
f f W W¶á ñ

¶
+ Ñ × á ñá ñ = Ñ × Ñá ñ - á ñ Îc

t
c c c p( ) ( * ) * , \v D xK , 

(12�63)
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 – ,n x× Ñ = ÎD K Ac c s � , (12�65)

 n v x× - Ñ + = Î( ) , ,D c c qn G  (12�66)
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The interfacial conditions (12�67) and (12�68) are reminiscent of 
the macroscopic Dirichlet and Neumann boundary conditions 
derived by the method of volume averaging in [125]� While sim-
ilar in spirit, the previous conditions do not require a closure 
approximation and rely on pore-scale simulations instead�

The solution of the coupled system (12�63) through (12�68) 
reduces to finding zeros of a system of equations in the form

 F q c G q cn n( , ) , ( , )® ®= =0 0, (12�69)

where
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coupled to Equations 12�63 through 12�66�
The hybrid pore-scale/continuum-scale algorithm can be 

formulated as a zero-finding algorithm for F and G through an 
iterative procedure similar to the one outlined in the previous 
section� Detailed derivations can be found in [114,115]�

Γ ∂Ωp

ν(x)

x

Continuum-scale domain

Ωp

xi

Γ   (x)

(a) (b)

Pore-scale domain
(xi)

in(x)

out(x)

FIGURE 12.12 (a) The subdomain where continuum-scale representation breaks down is depicted in gray� Its boundary is ∂Ωp� In the nonin-
trusive hybrid formulation, the boundary Γ is constructed as the locus of the centers of the family of averaging volumes V (x) whose envelope is 
∂Ωp� The red indicates the additional pore-scale domain necessary to define the nonintrusive boundary conditions� (b) A schematic representa-
tion of the averaging procedure across the boundary separating pore-scale and continuum-scale representations� On the left of Γ the pore-scale 
is fully resolved while on the right of Γ only a continuum-scale representation exists� (Adapted from Youzefzadeh, M� and Battiato, I�, Water 
Resour. Res., submitted, 2016�)
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375Multiscale Models of Flow and Transport

12.4.3  case Study: taylor Dispersion 
between Reactive Plates

In order to illustrate the coupling, in this section, we consider 
transport of a reactive solute by advection and diffusion in a 
fracture of width 2H� The solute undergoes a first-order hetero-
geneous reaction at the walls of the channel� The flow domain 
Ω = {(x, y): x ∈ (0, ∞),|y| < H} has the boundary Γ = {(x, y): x ∈ 
(0, ∞), |y| = H}�

Assuming laminar, fully developed flow inside the fracture, 
the “pore-scale” velocity is given by Poiseuille’s law, v = (u, 0)T, 
where
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and um is the maximum velocity at the center of the fracture 
(y = 0)� Hence, the pore-scale concentration satisfies
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The average concentration 〈c〉(x, t) is now defined as

 
á ñ º òc x t

H
c x y t y

H

H

( , ) ( , , )
1

2
d

-

� (12�75)

Upscaling of Equations 12�73 and 12�74 via homogenization 
technique gives [43]
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and
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The validity of Equations 12�76 through 12�78 requires that L, 
a macroscopic characteristic length scale in the x direction, be 

much larger than H, that is, ε = H/L ≪ 1, and places a number of 
constraints on the order of magnitude of Pey and Day� In particu-
lar, Day < 3 as evidenced by Equation 12�77 where K*  changes 
sign if Day > 3�

In order to test the hybrid coupling performance, transport 
in a chemically heterogeneous fracture is considered with initial 
pore-scale concentration c(x, y, 0) = 1 and boundary conditions 
of constant injection, c(0, y, t) = 0, and zero flux at the inlet and 
outlet, respectively� Specifically, a finite portion of the fracture is 
four orders of magnitude more reactive then the rest (see Figure 
12�13a), such that the typical Damköhler number ranges from 
6�25 × 10–4 to 2�56� Equations 12�76 through 12�78 fails for Day ≥ 3 
as the effective reaction coefficient K*  changes sign for increas-
ing positive values of K  (i�e�, increasing mass loss at the solid– 
liquid interface): this leads to the unphysical behavior of K* < 0 
(i�e�, source) while mass is absorbed (degraded) at the microscale 
(i�e�, sink)� While it is clear that differences between the upscaled 
model, (12�76) through (12�78), and a fully 2D pore-scale solu-
tion will be dramatic for Day ≥ 3, we show here that significant 
deviations from the “pore-scale” solution occur even for Day< 3� 
This is done by comparing the results of hybrid (embedded and 
nonintrusive, Figure 12�13b and c, respectively) simulations with 
that of the upscaled 1D equation (Figure 12�13d) and the average 
of the fully 2D solution (Figure 12�13a)�

Figures 12�14 [113] and 12�15a [114] compare the continuum-
scale concentration obtained from the upscaled 1D continuum-
scale, hybrid, and fully 2D pore-scale equations, for both the 
embedded and nonintrusive schemes, respectively� At the loca-
tion of high heterogeneity, the continuum-scale equation over-
estimates the concentration, with values that double the true 

(a)

(b)

(c)

(d)

FIGURE 12.13 (a) Two-dimensional fracture with chemically het-
erogeneous reactive walls� The orange portion represents the loca-
tion where the wall reactivity is much higher than its surroundings� 
(b) Representation of an embedded hybrid coupling where the pore-
scale (2D) domain overlaps with the continuum-scale (1D) domain� (c) 
Sketch of an nonintrusive hybrid coupling where the continuum- and 
pore-scale domains have no overlapping region and the coupling is per-
formed exclusively through boundary conditions� (d) Upscaled macro-
scopic 1D fracture model�
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concentration obtained from the pore-scale simulations� On 
the contrary, both hybrid schemes significantly improve the 
predictions� The insets in Figure 12�14 depict the concentration 
profile at the pore scale at three different times and shows how 
the highly reacting walls produce strong concentration gradi-
ents between areas where mass is more quickly depleted because 
of fast reactions (close to the walls) relative to others where the 
major transport mechanism is diffusion (in the center of the 

channel)� Importantly, Figure 12�15 (bottom) plots the absolute 
error of the nonintrusive (thin dashed line) and continuum 
(thin solid line) models relative to the fully 2D pore-scale solu-
tion� The error in the hybrid simulation is bounded by ε2 as pre-
dicted by homogenization technique� This suggests that if proper 
coupling conditions are established when local breakdown of 
macroscopic equations occurs, then model predictivity, that is, 
rigorous modeling error bounds, can be preserved�

1

Hybrid
Pore-scale
Continuum

0.9

0.8

0.7

0.6

0.5

(a)

0.4

0.3

0.2

0.1

0
0 2 4 6 8 10

x
12 14 16 18 20

c

Hybrid
Continuum

ε2

(b)
0

10–6

10–5

A
bs

ol
ut

e e
rr

or

10–4

10–3

2 4 6 8 10
x

12 14 16 18 20

FIGURE 12.15 (a) Temporal snapshots of the average concentration 〈c〉(x, t) computed with the 1D continuum model (solid line), nonintrusive  hybrid 
algorithm (×) and fully-resolved 2D pore-scale simulations (dashed line) at times t = 0�0005 (top), t = 0�015 (center) and t = 0�06 (bottom)� (b) Absolute 
error in the 1D and hybrid simulations and error bound prescribed by homogenization theory (horizontal line)� (Adapted from Youzefzadeh, M� and 
Battiato, I�, Water Resour. Res�, submitted, 2016�)
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algorithm (×) and fully resolved 2D pore-scale simulations (dashed line) at three different instances in time� Symbol □ indicates the location where 
the pore and continuum scales are coupled� Insets: pore-scale concentration c(x, y, t) at the fully resolved node for three different times� (Adapted 
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12.5 conclusions and outlook

Modeling flow and reactive transport in the subsurface is an 
extremely challenging task due to the presence of heterogene-
ity on a continuity of scales, nonlinear processes, and partial 
or total lack of scale separation� These problems have contin-
ued challenging modelers for decades� While much progress 
has been recently made to construct seamless models of “fully 
resolved” pore-scale domains as large as lab cores, there is an 
uphill and long path toward a fully integrated multiscale frame-
work (Figure 12�2) able to accurately model process dynamics 
across relevant spatial and temporal scale (i�e�, up to the field 
or reach scale), while accounting for accurate across-scale 
coupling�

The development of multiscale and hybrid algorithms that 
explicitly account for across-scale coupling gives rise to a set of 
new challenges� Tackling the latter is critical if multiscale mod-
eling capabilities are to transition from theory to practice� In the 
following, we provide an incomplete list of future challenges that 
will need to be addressed in the context of hybrid simulators and 
multiscale algorithms at large�

• Most subsurface hydrology applications call for ultralong 
time (hundreds or thousands of years) predictions of 
subsurface system response to unsteady, and potentially 
highly fluctuating, forcing factors, that is, for temporally-
upscaled continuum-scale models of time-averages, 

{ }( , ) : ( ) ( , )y yx xt T t t
t T

t T

= ¢ ¢
-

+

ò2 1D
D

D
- d , where 2ΔT is the time-

averaging window, or time support representative volume, 
and ψ is a fine- or coarse-scale spatially averaged quan-
tity� Yet, while standard in the theory of turbulence [126], 
the time-averaging of fine-scale models of flow in porous 
media and geologic formations [64,127] have attracted, to 
the best of our knowledge, much less attention compared 
to its overbearing spatial-averaging sibling� The importance 
of temporal resolution of time-fluctuating boundary condi-
tions and forcing factors in highly nonlinear systems has 
been demonstrated for nonlinear transport in the vadose 
zone where macroscale model predictions are greatly 
affected by the time resolution of forcing factors (e�g�, 
annual versus hourly meteorological data) [128]� A sys-
tematic approach to handle slow (seasonal) and fast (daily) 
temporal fluctuations of, for example, boundary conditions 
(e�g�, momentum and mass fluxes) is critical to understand 
and predict system resilience under global climate changes�

• The understanding of uncertainty propagation across 
scales in hybrid/multiscale models is still at its infancy, 
despite few recent advancements [110,129]� For example, 
the impact of unknown pore-scale geometry on multi-
scale algorithms needs to be studied and quantified in 
order to provide robust quantification of uncertainty in 
multiscale model predictions�

• Similarly, parametric uncertainty in multiscale models 
must be accounted for� While Monte Carlo simulations 

appear unrealistic in a multiscale framework, stochastic 
multiscale approaches could be a viable option to handle 
both aleatoric and epistemic uncertainties�

• Data assimilation will be critical to reduce uncertainty 
in multiscale models� New multiscale data assimilation 
techniques should be designed that are best suited for 
multiscale models�

While the path ahead is challenging, it seems appropriate to 
conclude this chapter on Albert Einstein’s note that “everything 
should be made as simple as possible but not simpler�”

Acknowledgments

Partial support from EAR NSF under award “Collaborative 
Research: Hybrid Modeling of Reactive Transport in Porous 
and Fractured Media” and Battelle Memorial Institute grant 
“Hydro-Biogeochemical Process dynamics in the Groundwater 
Surface Water Interaction Zone” is gratefully acknowledged�

References

 1� NSF, Simulation-Based Engineering Science: 
Revolutionizing Engineering Science through Simulation, 
National Science Foundation Blue Ribbon Panel on 
Simulation-Based Science, Washington, DC (2006)�

 2� D� M� Tartakovsky, Assessment and management of risk 
in subsurface hydrology: A review and perspective, Adv. 
Water Resour� 51, 247–260 (2013)�

 3� J� Gomez-Hernandez, Complexity, Ground Water 44(6), 
782–785 (2006)�

 4� M� Hill, The practical use of simplicity in develop-
ing ground water models, Ground Water 44(6), 775–781 
(2006)�

 5� BERAC, Virtual laboratory: Innovative framework for 
biological and environmental grand challenges, A Report 
from the Biological and Environmental Research Advisory 
Committee, DOE/SC-0156 (2013)� http://science�energy�gov/~/
media/ber/berac/pdf/20130221/BERACVirtualLaboratory_
Feb-18-2013�pdf�

 6� U�S� Department of Energy, Office of Basic Energy 
Sciences, Basic Research needs for geosciences: Facilitating 
21st century energy systems (2007)� http://science�energy�
gov/~/media/bes/pdf/reports/files/geo_rpt�pdf�

 7� J� H� Cushman, On unifying the concepts of scale, instru-
mentation, and stochastics in the development of multi-
phase transport theory, Water Resour. Res� 1668–1676, 20 
(1984)�

 8� J� H� Cushman, On measurement, scale, and scaling, Water 
Resour. Res� 22(2), 129–134 (1986)�

 9� J� H� Cushman, Dynamics of Fluids in Hierarchical Porous 
Media� Academic Press, San Diego, CA (1990)�

 10� J� H� Cushman, The Physics of Fluids in Hierarchical Porous 
Media: Angstroms to Miles� Kluwer Academic Publisher, 
New York (1997)�

D
ow

nl
oa

de
d 

by
 [

St
an

fo
rd

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 1
1:

22
 2

0 
M

ay
 2

01
7 

http://www.crcnetbase.com/action/showLinks?crossref=10.1029%2FWR022i002p00129
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.advwatres.2012.04.007


378 The Handbook of Groundwater Engineering

 11� S� C� Jose and O� A� Cirpka, Measurement of mixing-
controlled reactive transport in homogeneous porous 
media and its prediction from conservative tracer test 
data, Environ. Sci. Technol� 38(7), 2089–2096 (2004)�

 12� L� Luquot and P� Gouze, Experimental determination of 
porosity and permeability changes induced by massive 
injection of CO2 into carbonate reservoirs, Chem. Geol� 
265, 148–159 (2009)�

 13� C� Geloni, T� Giorgis, and A� Battistelli, Modeling of rocks 
and cement alteration due to co2 injection in an exploited 
gas reservoir, Transp. Porous Media 90, 183–200 (2011)�

 14� J� Qajar, N� Francois, and C� H� Arns, Micro-tomographic 
characterization of dissolution-induced local porosity 
changes including fine migration in carbonate rocks, 
153216-MS. SPE EOR Conference at Oil and Gas West Asia, 
Society of Petroleum Engineers, Muscat, Oman (2012)�

 15� P� O� Mangane, L� Gouze, P� Gouze, and L� Luquot, 
Permeability impairment of a limestone reservoir trig-
gered by heterogenous dissolution and particle migration 
during CO2-righ injection, Geophys. Res. Lett� 17, 4114–
4619 (2013)�

 16� L� Luquot, O� Rodriguez, and P� Gouze, Experimental 
characterization of porosity structure and transport prop-
erty changes in limestone undergoing different dissolution 
regimes, Transp. Porous Media 101, 507–532 (2014)�

 17� M� M� Smith, Y� Sholokhova, Y� Hao, and S� A� Carroll, 
Evaporite caprock integrity: An experimental study of 
reactive mineralogy and pore-scale heterogeneity during 
brine-CO2 exposure, Environ. Sci. Technol� 47(1), 262–268 
(2012)�

 18� R� Ma, C� Zheng, C� Liu, J� Greskowiak, H� Prommer, and 
J� Zachara, Assessment of controlling processes for field-
scale uranium reactive transport under highly transient 
flow conditions, Water Resour. Res� 50, 1006–1024 (2014)�

 19� J�-H� Lee, J� M� Zachara, J� K� Fredrickson, S� M� Heald, J� 
P� McKinley, A� E� Plymale, C� T� Resch, and D� A� Moore, 
Fe(II)- and sulfide-facilitated reduction of 99Tc(VII)O4− in 
microbially reduced hyporheic zone sediments, Geochim. 
Cosmochim. Acta 136, 247–264 (2014)�

 20� B� D� Wood, The role of scaling laws in upscaling, Adv. 
Water Resour� 32(5), 723–736 (2009)�

 21� O� Silva, J� Carrera, M� Dentz, S� Kumar, A� Alcolea, and 
M� Willmann, A general real-time formulation for multi-
rate mass transfer problems, Hydrol. Earth Syst. Sci� 13, 
1399–1411 (2009)�

 22� W� Um, R� J� Serne, S� B� Yabusaki, and A� T� Owen, 
Enhanced radionuclide immobilization and flow path 
modifications by dissolution and secondary precipitates, 
J. Environ. Qual� 34, 1404–1414 (2005)�

 23� S� P� Neuman and D� M� Tartakovsky, Perspective on 
theories of anomalous transport in heterogeneous media, 
Adv. Water Resour� 32(5), 670–680 (2009)�

 24� S� Whitaker, The Method of Volume Averaging� Kluwer 
Academic Publishers, Dordrecht, the Netherlands (1999)�

 25� F� Valdes-Parada, J� Ochoa-Tapia, and J� Alvarez-Ramirez, 
On the effective viscosity for the Darcy-Brinkman equa-
tion, Phys. A 385, 69–79 (2007)�

 26� P� E� Kechagia, I� N� Tsimpanogiannis, Y� C� Yortsos, and 
P� C� Lichtner, On the upscaling of reaction-transport pro-
cesses in porous media with fast or finite kinetics, Chem. 
Eng. Sci� 57(13), 2565–2577 (2002)�

 27� M� Shapiro and H� Brenner, Taylor dispersion of chemically 
reactive species: Irreversible first-order reactions in bulk 
and on boundaries, Chem. Eng. Sci� 41(6), 1417–1433 (1986)�

 28� L� Durlovsky and J� F� Brady, Analysis of the Brinkman 
equation as a model for flow in porous media, Phys. Fluids 
30(11), 3329–3341 (2009)�

 29� M� Shapiro and M� Brenner, Dispersion of a chemically 
reactive solute in a spatially periodic model of a porous 
medium, Chem. Eng. Sci� 43(3), 551–571 (1988)�

 30� M� Shapiro, R� Fedou, J� Thovert, and P� M� Adler, Coupled 
transport and dispersion of multicomponent reactive sol-
utes in rectilinear flows, Chem. Eng. Sci� 51(22), 5017–5041 
(1996)�

 31� U� Hornung, Homogenization and Porous Media� Springer, 
New York (1997)�

 32� P� M� Adler, Porous Media: Geometry and Transports� 
Butterworth-Heinemann, New York (1992)�

 33� R� C� Acharya, S� E� A� T� M� V� der Zee, and A� Leijnse, 
Transport modeling of nonlinearly adsorbing solutes in 
physically heterogeneous pore networks, Water Resour. 
Res� 41, W02020 (2005)�

 34� W� G� Gray and C� T� Miller, Thermodynamically con-
strained averaging theory approach for modeling flow 
and transport phenomena in porous medium systems: 1� 
Motivation and overview, Adv. Water Resour� 28(2), 161–
180 (2005)�

 35� Y� Davit, C� G� Bell, H� M� Byrne, L� A� C� Chapman, 
L� S� Kimpton, G� E� Lang, K� H� L� Leonard et  al�, 
Homogenization via formal multiscale asymptotics and 
volume averaging: How do the two techniques compare? 
Adv. Water Resour� 62, 178–206 (2013)�

 36� B� D� Wood, Technical note: Revisiting the geometric 
theorems for volume averaging, Adv. Water Resour� 62(B), 
340–352 (2013)�

 37� J� H� Cushman, L� S� Bennethum, and B� X� Hu, A primer 
on upscaling tools for porous media, Adv. Water Resour� 
25(8–12), 1043–1067 (2002)�

 38� H� Arunachalam, S� Onori, and I� Battiato, On veracity of 
macroscopic Lithium-ion battery models, J. Electrochem. 
Soc� 162(10), A1940–A1951 (2015)�

 39� G� de Marsily, Quantitative Hydrogeology� Academic Press, 
San Diego, CA (1986)�

 40� J� Bear, Dynamics of Fluids in Porous Media� Dover 
Publications, Inc�, New York (1972)�

 41� H� Brenner, Macrotransport Processes, Butterworth-
Heinemann Series in Chemical Engineering, Stoneham, 
MA (1993)�

D
ow

nl
oa

de
d 

by
 [

St
an

fo
rd

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 1
1:

22
 2

0 
M

ay
 2

01
7 

http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.advwatres.2008.08.015
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2FS0009-2509%2802%2900124-0
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2F0009-2509%2886%2985228-9
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2F0009-2509%2888%2987016-7
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.advwatres.2008.08.005
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2Fs11242-013-0257-4
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.physa.2007.06.012


379Multiscale Models of Flow and Transport

 42� J� L� Auriault and P� M� Adler, Taylor dispersion in porous 
media: Analysis by multiple scale expansions, Adv. Water 
Resour� 4(18), 217–226 (1995)�

 43� A� Mikelić, V� Devigne, and C� J� Van Duijn, Rigorous 
upscaling of the reactive flow through a pore, under domi-
nant Peclet and Damköhler numbers, SIAM J. Math. Anal� 
38(4), 1262–1287 (2006)�

 44� M� A� Peter, Homogenization in domains with evolving 
microstructure, C. R. Mécanique 335, 357–362 (2007)�

 45� E� Marušić-Paloka and A� Piatnitski, Homogenization of 
a nonlinear convection-diffusion equation with rapidly 
oscillating coefficients and strong convection, J. Lond. 
Math. Soc� 2(72), 391–409 (2005)�

 46� S� P� Neuman, Theoretical derivation of Darcy’s law, Acta 
Mecanica 25, 153–170 (1977)�

 47� H� Darcy, Les fontaines publiques de la ville de dijon, 
Victor Darmon, Paris, France (1856)�

 48� J� L� Auriault, C� Geindreau, and C� Boutin, Filtration law 
in porous media with poor separation of scales, Transp. 
Porous Media 60, 89–108 (2005)�

 49� H� C� Brinkman, A calculation of the viscous force exerted 
by a flowing fluid on a dense swarm of particles, Appl. Sci. 
Res� A1, 27–34 (1949)�

 50� T� Lévy, Fluid flow through an array of fixed particles, Int. 
J. Eng. Sci� 21, 11–23 (1983)�

 51� J�-L� Auriault, On the domain of validity of Brinkman’s 
equation, Transp. Porous Media 79, 215–223 (2009)�

 52� B� Goyeau, T� Benihaddadene, D� Gobin, and M� Quintard, 
Averaged momentum equation for flow through a nonho-
mogeneous porous structure, Transp. Porous Media 28, 
19–50 (1997)�

 53� I� Battiato, P� R� Bandaru, and D� M� Tartakovsky, Elastic 
response of carbon nanotube forests to aerodynamic 
stresses, Phys. Rev. Lett� 105, 144504 (2010)�

 54� I� Battiato, Self-similarity in coupled Brinkman/Navier–
Stokes flows, J. Fluid Mech� 699, 94–114 (2012)�

 55� I� Battiato, Effective medium theory for drag-reducing 
micro-patterned surfaces in turbulent flows, Eur. Phys. J� 
E37, 19 (2014)�

 56� I� Battiato and S� Rubol, Single-parameter model of veg-
etated aquatic flows, Water Resour. Res� 50(8), 6358–6369 
(2014)�

 57� A� Papke and I� Battiato, A reduced-complexity model for 
dynamic similarity in obstructed shear flows, Geophys. 
Res. Lett� 40, 1–5 (2013)�

 58� G� Blois, J� L� Best, K� T� Christensen, R� J� Hardy, and G� 
H� S� Smith, Coherent flow structures in the pore spaces 
of permeable beds underlying a unidirectional turbulent 
boundary layer: A review and some new experimental 
results, in J� G� Venditti, J� L� Best, M� Church, and R� J� 
Hardy (eds�), Coherent Flow Structures at Earth’s Surface� 
John Wiley & Sons, Ltd�, Chichester, UK (2013)�

 59� J� R� Philip, Flow in porous media, Annu. Rev. Fluid Mech� 
2, 177–204 (1970)�

 60� S� Whitaker, The forchheimer Equation: A theoretical 
development, Transp. Porous Media 25, 17–61 (1996)�

 61� Z� Chen, S� L� Lyons, and G� Qin, Derivation of the forch-
heimer law via homogenization, Transp. Porous Media 
44(2), 325–335 (2001)�

 62� M� J� S� de Lemos, Turbulence in Porous Media: Modeling 
and Applications� Elsevier Ltd�, Oxford, U�K� (2006)�

 63� J� H� Cushman, D� O� Malley, and M� Park, Anomalous 
dispersion, renormalization groups, scaling laws and clas-
sification: A reflection on recent efforts, Adv. Water Resour� 
62(B), 207–214 (2013)�

 64� W� G� Gray and C� T� Miller, A generalization of averaging 
theorems for porous medium analysis, Adv. Water Resour� 
62(B), 227–237 (2013)�

 65� Y� Liu and P� K� Kitanidis, A mathematical and compu-
tational study of the dispersivity tensor in anisotropic 
porous media, Adv. Water Resour� 62(B), 303–316 (2013)�

 66� A� Rabinovich, G� Dagan, and T� Miloh, Effective conduc-
tivity of heterogeneous aquifers in unsteady periodic flow, 
Adv. Water Resour� 62(B), 317–326 (2013)�

 67� J� A� Ochoa-Tapia, P� Stroeve, and S� Whitaker, Facilitated 
transport in porous media, Chem. Eng. Sci� 46, 477–496 
(1991)�

 68� B� D� Wood and R� M� Ford, Biological processes in porous 
media: From the pore scale to the field, Adv. Water Resour� 
30(6–7), 1387–1391 (2007)�

 69� B� D� Wood, K� Radakovich, and F� Golfier, Effective reaction 
at a fluid-solid interface: Applications to biotransformation in 
porous media, Adv. Water Resour� 30(6–7), 1630–1647 (2007)�

 70� T� L� van Noorden and I� S� Pop, A Stefan problem mod-
elling crystal dissolution and precipitation, IMA J. Appl. 
Math� 73(2), 393–411 (2008)�

 71� F� Hesse, F� A� Radu, M� Thullner, and S� Attinger, Upscaling 
of the advection-diffusion-reaction equation with Monod 
reaction, Adv. Water Resour� 32, 1336–1351 (2009)�

 72� J� H� Cushman and T� R� Ginn, Nonlocal dispersion in 
media with continuously evolving scales of heterogeneity, 
Transp. Porous Media 1, 1–138 (1993)�

 73� S� P� Neuman, Eulerian–Lagrangian theory of transport in 
space-time non-stationary velocity fields—Exact nonlocal 
formalism by conditional moments and weak approxima-
tion, Water Resour. Res� 29(3), 633–645 (1993)�

 74� L� W� Gelhar, C� Welty, and K� R� Rehfeldt, A critical review 
of data on field-scale dispersion in aquifers, Water Resour. 
Res� 28(7), 1955–1974 (1992)�

 75� L� Li, C� Peters, and M� Celia, Upscaling geochemical reac-
tion rates using pore-scale network modeling, Adv. Water 
Resour� 29, 1351–1370 (2006)�

 76� M� Dentz, T� L� Borgne, A� Englert, and B� Bijelijc, Mixing, 
spreading and reaction in heterogeneous media: A brief 
review, J. Contam. Hydrol� 120–121, 1–17 (2011)�

 77� A� M� Tartakovsky, D� M� Tartakovsky, and P� Meakin, 
Stochastic Langevin model for flow and transport in 
porous media, Phys. Rev. Lett� 101, 044502 (2008)�

D
ow

nl
oa

de
d 

by
 [

St
an

fo
rd

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 1
1:

22
 2

0 
M

ay
 2

01
7 

http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.advwatres.2009.08.008
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2Fs11242-004-3649-7
http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2F2013WR015065
http://www.crcnetbase.com/action/showLinks?crossref=10.1134%2FS0097807812060048
http://www.crcnetbase.com/action/showLinks?crossref=10.1134%2FS0097807812060048
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2Fs11242-008-9308-7
http://www.crcnetbase.com/action/showLinks?crossref=10.1103%2FPhysRevLett.101.044502
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.advwatres.2006.05.032


380 The Handbook of Groundwater Engineering

 78� C� Knutson, A� Valocchi, and C� Werth, Comparison of 
continuum and pore-scale models of nutrient biodegra-
dation under transverse mixing conditions, Adv. Water 
Resour� 30(6–7), 1421–1431 (2007)�

 79� A� M� Tartakovsky, P� Meakin, T� D� Scheibe, and R� M� 
E� West, Simulation of reactive transport and precipitation 
with smoothed particle hydrodynamics, J. Comput. Phys� 
222, 654–672 (2007)�

 80� A� M� Tartakovsky, G� Redden, P� C� Lichtner, T� D� 
Scheibe, and P� Meakin, Mixing-induced precipitation: 
Experimental study and multi-scale numerical analysis, 
Water Resour. Res� 44, W06S04 (2008)�

 81� B� Zinn, L� C� Meigs, C� F� Harvey, R� Haggerty, W� J� 
Peplinski, and C� F� von Schwerin, Experimental visual-
ization of solute transfer processes in two-dimensional 
conductivity fields with connected regions of high conduc-
tivity, Environ. Sci. Technol� 38, 3916–3926 (2004)�

 82� I� Battiato, D� M� Tartakovsky, A� M� Tartakovsky, and T� 
Scheibe, On breakdown of macroscopic models of mixing-
controlled heterogeneous reactions in porous media, Adv. 
Water Resour� 32, 1664–1673 (2009)�

 83� I� Battiato and D� M� Tartakovsky, Applicability regimes 
for macroscopic models of reactive transport in porous 
media, J. Contam. Hydrol� 120–121, 18–26 (2011)�

 84� F� Boso and I� Battiato, Homogenizability conditions of 
multicomponent reactive transport processes, Adv. Water 
Resour� 62, 254–265 (2013)�

 85� S� Molins, D� Trebotich, C� I� Steefel, and C� P� Shen, An 
investigation of the effect of pore scale flow on average geo-
chemical reaction rates using direct numerical simulation, 
Water Resour. Res� 48, W03527 (2012)�

 86� T� D� Scheibe, W� A� Perkins, M� C� Richmond, M� I� 
McKinley, P� D� J� Romero-Gomez, M� Oostrom, T� W� 
Wietsma, J� A� Serkowski, and J� M� Zachara, Pore-scale 
and multiscale numerical simulation of flow and transport 
in a laboratory-scale column, Water Resour. Res� 51(2), 
1023–1035 (2015)�

 87� M� L� Brusseau and P� S� C� Rao, Non-equilibrium and dis-
persion during transport of contaminants in groundwater: 
Field-scale process, in H� Kobus and W� Kinzelbach (eds�), 
Contaminant Transport in Groundwater� A� A� Balkema, 
Brookfield, VT, pp� 237–244 (1989)�

 88� H� Gaber, W� Inskeep, S� Comfort, and J� Wraith, Non-
equilibrium transport of atrazine through large intact soils 
cores, Soil Sci. Soc. Am. J� 59, 60–67 (1995)�

 89� E� Weinan, B� Engquist, and Z� Huang, Heterogeneous 
multiscale method: A general methodology for multiscale 
modeling� Phys. Rev. B 67(9), 092101 (2003)�

 90� T� Scheibe, E� Murphy, X� Chen, A� Rice, K� Carroll, B� Palmer, 
A� Tartakovsky, I� Battiato, and B� Wood, An analysis plat-
form for multiscale hydrogeologic modeling with emphasis on 
hybrid multiscale methods, Ground Water 53(1), 38–56 (2015)�

 91� E� Weinan, Principles of Multiscale Modeling� Cambridge 
University Press, New York (2011)�

 92� J� C� Parker and A� J� Valocchi, Constraints on the valid-
ity of equilibrium and first-order kinetic transport mod-
els in structured soils, Water Resour. Res� 22, 399–407 
(1986)�

 93� J� Griffioen, Suitability of the first-order mass transfer con-
cept for describing cyclic diffusive mass transfer in stag-
nant zones, J. Contam. Hydrol� 34, 155–165 (1998)�

 94� F� Cherblanc, A� Ahmadi, and M� Quintard, Two-medium 
description of dispersion in heterogeneous porous media: 
Calculation of macroscopic properties, Water Resour. Res� 
39, 1154 (2003)�

 95� P� Leemput, C� Vandekerckhove, W� Vanroose, and D� 
Roose, Accuracy of hybrid lattice Boltzmann/finite dif-
ference schemes for reaction diffusion systems� Multiscale 
Model. Simul� 6(3), 838–857 (2007)�

 96� A� M� Tartakovsky, D� M� Tartakovsky, T� D� Scheibe, and 
P� Meakin, Hybrid simulations of reaction-diffusion sys-
tems in porous media, SIAM J. Sci. Comput� 30(6), 2799–
2816 (2008)�

 97� P� Langlo and M� S� Espedal, Macrodispersion for two-
phase, immiscible flow in porous media, Adv. Water 
Resour� 17, 297–316 (1994)�

 98� Y� Efendief, L� J� Durlofsky, and S� H� Lee, Modeling of 
subgrid effects in coarse-scale simulations of transport 
in heterogeneous porous media, Water Resour. Res� 36(8), 
2031–2041 (2000)�

 99� Y� Efendief and L� J� Durlofsky, Numerical modeling of 
subgrid heterogeneity in two phase flow simulations, 
Water Resour. Res� 38(8), 1128–1138 (2002)�

 100� Y� Efendief and L� J� Durlofsky, A generalized convection-
diffusion model for subgrid transport in porous media, 
Multiscale Model. Simul� 1(3), 504–526 (2003)�

 101� E� Villa, A� Balaeff, L� Mahadevan, and K� Schulten, 
Multiscale method for simulating protein-DNA com-
plexes, Multiscale Model. Simul� 2, 527–553 (2004)�

 102� X� Yue and E� Weinan, Numerical methods for multiscale 
transport equations and application to two-phase porous 
media flow, J. Comput. Phys� 210, 656–675 (2005)�

 103� D� G� Vlachos, A� B� Mhadeshwar, and N� S� Kaisare, 
Hierarchical multi-scale model-based design of experi-
ments, catalysts, and reactors for fuel processing, Comp. 
Chem. Eng� 30, 1712–1724 (2006)�

 104� M� Christie, Upscaling for reservoir simulation, J. Petrol. 
Technol� 48, 1004–1010 (1996)�

 105� B� Berkowitz, H� S� Berkowitz, and H� Scher, Theory of 
anomalous chemical transport in random fracture net-
works, Phys. Rev. E 57(5), 8585–8569 (1998)�

 106� D� A� Benson, S� W� Wheatcraft, and M� M� Meerschaert, 
Application of a fractional advection-dispersion equation, 
Water Resour. Res� 36(6), 1403–1412 (2000)�

 107� J� Carrera, X� Sánchez-Vila, I� Benet, A� A� Medina, 
G� Galarza, and J� Guimerà, On matrix diffusion: 
Formulations, solution methods and qualitative effects, 
Hydrogeol. J� 6, 178–190 (1998)�

D
ow

nl
oa

de
d 

by
 [

St
an

fo
rd

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 1
1:

22
 2

0 
M

ay
 2

01
7 

http://www.crcnetbase.com/action/showLinks?crossref=10.1137%2FS1540345902413693
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2FS0169-7722%2898%2900098-9
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.jcp.2005.05.009
http://www.crcnetbase.com/action/showLinks?crossref=10.1029%2F2006WR005725
http://www.crcnetbase.com/action/showLinks?crossref=10.1137%2F060675113
http://www.crcnetbase.com/action/showLinks?crossref=10.1029%2F2000WR900031


381Multiscale Models of Flow and Transport

 108� F� J� Alexander, A� L� Garcia, and D� M� Tartakovsky, 
Algorithm refinement for stochastic partial differential equa-
tions: 1� Linear diffusion, J. Comput. Phys� 182, 47–66 (2002)�

 109� F� J� Alexander, A� L� Garcia, and D� M� Tartakovsky, 
Algorithm refinement for stochastic partial differential 
equations: II� Correlated systems, J. Comput. Phys� 207(2), 
769–787 (2005)�

 110� F� J� Alexander, A� L� Garcia, and D� M� Tartakovsky, Noise 
in algorithm refinement methods, Comput. Sci. Eng� 7(3), 
32–38 (2005)�

 111� A� Malevanets and R� Kapral, Solute molecular dynam-
ics in a mesoscale solvent, J. Chem. Phys� 112, 7260–7269 
(2000)�

 112� P� V� Coveney and P� W� Fowler, Modelling biological 
complexity: A physical scientist’s perspective, J. R. Soc. 
Interface 2, 267–280 (2005)�

 113� I� Battiato, D� M� Tartakovsky, A� M� Tartakovsky, and T� 
D� Scheibe, Hybrid models of reactive transport in porous 
and fractured media, Adv. Water Resour� 34(9), 1140–1150 
(2011)�

 114� M� Youzefzadeh and I� Battiato, Nonintrusive hybrid mod-
els of reactive transport in fractured media: An immersed 
boundary method approach, Water Resour. Res� submitted 
(2016)�

 115� M� Yousefzadeh and I� Battiato, Second-order IBM recon-
struction scheme through normal boundary interpolation, 
J. Comput. Phys� submitted (2016)�

 116� M� Peszynska, Q� Lu, and M� Wheeler, Coupling differ-
ent numerical coupling different numerical algorithms for 
two phase fluid flow, in J� Whiteman (ed�), Mathematics of 
Finite Elements and Applications X� Elsevier, Oxford, UK, 
pp� 205–214 (2000)�

 117� M� Peszynska, Q� Lu, and M� Wheeler, Multiphysics cou-
pling of codes, in L� Bentley, J� Sykes, C� Brebbia, W� Gray, 
and G� Pinder (eds�), Computational Methods in Water 
Resources� A�A� Balkema, pp� 175–182 (2000)�

 118� M� Peszynska, M� Wheeler, and I� Yotov, Mortar upscaling 
for multiphase flow in porous media, Computat. Geosci� 
6(1), 73–100 (2002)�

 119� M� T� Balhoff, S� G� Thomas, and M� F� Wheeler, Mortar 
coupling and upscaling of pore-scale models, Computat. 
Geosci� 12(1), 15–27 (2008)�

 120� T� Y� Sun, Y� Mehmani, and M� T� Balhoff, Hybrid mul-
tiscale modeling through direct numerical substitution 
of pore-scale models into near-well reservoir simulators, 
Energ. Fuels 26, 5828–5836 (2012)�

 121� T� Y� Sun, Y� Mehmani, and M� T� Balhoff, Pore to contin-
uum upscaling of permeability in heterogeneous porous 
media using mortars, Int. J. Oil Int. J. Gas Coal Technol� 
5(2–3), 249–266 (2012)�

 122� Y� Mehmani, T� Sun, M� T� Balhoff, P� Eichhubl, and S� 
Bryant, Multiblock pore-scale modeling and upscaling of 
reactive transport: Application to carbon sequestration, 
Transp. Porous Media 95(2), 305–326 (2012)�

 123� Y� Mehmani, M� Oostrom, and M� T� Balhoff, A streamline 
splitting pore-network approach for computationally inex-
pensive and accurate simulation of species transport in 
porous media, Water Resour. Res� 50(3), 2488–2517 (2014)�

 124� Y� Tang, A� J� Valocchi, and C� J� Werth, A hybrid pore-
scale and continuum-scale model for solute diffusion, 
reaction, and biofilm development in porous media, Water 
Resour. Res� 51(3), 1846–1859 (2015)�

 125� M� Prat, On the boundary conditions at the macroscopic 
level, Transp. Porous Media 4, 259–280 (1989)�

 126� S� B� Pope, Turbulent Flows� Cambridge University Press, 
New York (2000)�

 127� Y� He and J� F� Sykes, On the spatial-temporal averaging 
method for modeling transport in porous media, Transp. 
Porous Media 22, 1–51 (1996)�

 128� P� Wang, P� Quinland and D� M� Tartakovsky, Effects of 
spatio-temporal variability of precipitation on contami-
nant migration in the vadose effects of spatio-temporal 
variability of precipitation on contaminant migration in 
the vadose zone, Geophys. Res. Lett� 36, L12404 (2009)�

 129� S� Taverniers, F� J� Alexander, and D� M� Tartakovsky, 
Noise propagation in hybrid models of nonlinear sys-
tems: The ginzburg-landau equation, J. Comput. Phys� 262, 
313–324 (2014)�

D
ow

nl
oa

de
d 

by
 [

St
an

fo
rd

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 1
1:

22
 2

0 
M

ay
 2

01
7 

http://www.crcnetbase.com/action/showLinks?crossref=10.1063%2F1.481289
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2Fs11242-012-0044-7
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.advwatres.2011.01.012
http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2F2014WR016322
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2FBF00974310
http://www.crcnetbase.com/action/showLinks?crossref=10.1029%2F2009GL038347


D
ow

nl
oa

de
d 

by
 [

St
an

fo
rd

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 1
1:

22
 2

0 
M

ay
 2

01
7 

http://taylorandfrancis.com
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315371801-13&iName=master.img-031.jpg&w=287&h=372

	12: Multiscale Models of Flow and Transport
	12.1 Introduction: A Question of Scale
	12.2 From First Principles to Effective-Medium Equations
	12.3 Robustness of Macroscopic Models
	12.4 Multiscale and Hybrid Methods
	12.5 Conclusions and Outlook
	Acknowledgments
	References


